Monkeys serve as important model species for studying human diseases and developing therapeutic strategies, yet the application of monkeys in biomedical researches has been significantly hindered by the difficulties in producing animals genetically modified at the desired target sites. Here, we first applied the CRISPR/Cas9 system, a versatile tool for editing the genes of different organisms, to target monkey genomes. By coinjection of Cas9 mRNA and sgRNAs into one-cell-stage embryos, we successfully achieve precise gene targeting in cynomolgus monkeys. We also show that this system enables simultaneous disruption of two target genes (Ppar-γ and Rag1) in one step, and no off-target mutagenesis was detected by comprehensive analysis. Thus, coinjection of one-cell-stage embryos with Cas9 mRNA and sgRNAs is an efficient and reliable approach for gene-modified cynomolgus monkey generation.
Amorpha-4,11-diene synthase (ADS) of Artemisia annua catalyzes the conversion of farnesyl diphosphate into amorpha-4,11-diene, the first committed step in the biosynthesis of the antimalarial drug artemisinin. The promoters of ADS contain two reverse-oriented TTGACC W-box cis-acting elements, which are the proposed binding sites of WRKY transcription factors. A full-length cDNA (AaWRKY1) was isolated from a cDNA library of the glandular secretory trichomes (GSTs) in which artemisinin is synthesized and sequestered. AaWRKY1 encodes a 311 amino acid protein containing a single WRKY domain. AaWRKY1 and ADS genes were highly expressed in GSTs and both were strongly induced by methyl jasmonate and chitosan. Transient expression analysis of the AaWRKY1-GFP (green fluorescent protein) reporter revealed that AaWRKY1 was targeted to nuclei. Biochemical analysis demonstrated that the AaWRKY1 protein was capable of binding to the W-box cis-acting elements of the ADS promoters, and it demonstrated transactivation activity in yeast. Co-expression of the effector construct 35S::AaWRKY1 with a reporter construct ADSpro1::GUS greatly activated expression of the GUS (beta-glucuronidase) gene in stably transformed tobacco. Furthermore, transient expression experiments in agroinfiltrated Nicotiana benthamiana and A. annua leaves showed that AaWRKY1 protein transactivated the ADSpro2 promoter activity by binding to the W-box of the promoter; disruption of the W-box abolished the activation. Transient expression of AaWRKY1 cDNA in A. annua leaves clearly activated the expression of the majority of artemisinin biosynthetic genes. These results strongly suggest the involvement of the AaWRKY1 transcription factor in the regulation of artemisinin biosynthesis, and indicate that ADS is a target gene of AaWRKY1 in A. annua.
CRISPR/Cas9 has been used to genetically modify genomes in a variety of species, including non-human primates. Unfortunately, this new technology does cause mosaic mutations, and we do not yet know whether such mutations can functionally disrupt the targeted gene or cause the pathology seen in human disease. Addressing these issues is necessary if we are to generate large animal models of human diseases using CRISPR/Cas9. Here we used CRISPR/Cas9 to target the monkey dystrophin gene to create mutations that lead to Duchenne muscular dystrophy (DMD), a recessive X-linked form of muscular dystrophy. Examination of the relative targeting rate revealed that Crispr/Cas9 targeting could lead to mosaic mutations in up to 87% of the dystrophin alleles in monkey muscle. Moreover, CRISPR/Cas9 induced mutations in both male and female monkeys, with the markedly depleted dystrophin and muscle degeneration seen in early DMD. Our findings indicate that CRISPR/Cas9 can efficiently generate monkey models of human diseases, regardless of inheritance patterns. The presence of degenerated muscle cells in newborn Cas9-targeted monkeys suggests that therapeutic interventions at the early disease stage may be effective at alleviating the myopathy.
Summary Recent advances in gene editing technology have introduced the potential for application of mutagenesis approaches in non-human primates to model human development and disease. Here we report successful TALEN-mediated mutagenesis of an X-linked, Rett Syndrome (RTT) gene, the methyl-CpG binding protein 2 (MECP2), in both rhesus and cynomolgus monkeys. Microinjection of MECP2-targeting TALEN plasmids into rhesus and cynomolgus zygotes leads to effective gene editing of MECP2 with no detected off-target mutagenesis. Male rhesus (2) and cynomolgous (1) fetuses carrying MECP2 mutations in various tissues including testes were miscarried during mid-gestation, consistent with RTT-linked male embryonic lethality in humans. One live delivery of a female cynomolgus monkey occurred after 162 days of gestation, with abundant MECP2 mutations in peripheral tissues. We conclude that TALEN-mediated mutagenesis can be an effective tool for genetic modeling of human disease in non-human primates.
Abstract:Catechins are widely occurring in our diet and beverages. The cancer-preventive activities of catechins have been extensively studied. Of these, (−)-epigallocatechin-3-gallate (EGCG), the principal catechin in green tea, has received the most attention. The inhibitory activities of tea catechins against carcinogenesis and cancer cell growth have been demonstrated in a large number of laboratory studies. Many mechanisms for modulating cancer signaling and metabolic pathways have been proposed based on numerous studies in cell lines with EGCG, the most active tea catechin. Nevertheless, it is not known whether many of these mechanisms indeed contribute to the anti-cancer activities in animals and in humans. Human studies have provided some results for the cancer preventive activities of tea catechins; however, the activities are not strong. This article reviews the cancer preventive activities and mechanisms of action of tea catechins involving their redox activities, biochemical properties and binding to key enzymes or signal transduction proteins. These mechanisms lead to suppression of cell proliferation, increased apoptosis and inhibition of angiogenesis. The relevance of the proposed mechanisms for cancer prevention are assessed in the light of the situation in vivo. The potential and possible problems in the application of tea and tea-derived products for cancer prevention are discussed.
Summary Isobaric labeling quantification by mass spectrometry (MS) has emerged as a powerful technology for multiplexed large-scale protein profiling, but measurement accuracy in complex mixtures is confounded by the interference from co-isolated ions, resulting in ratio compression. Here we report that the ratio compression can be essentially resolved by the combination of pre-MS peptide fractionation, MS2-based interference detection and post-MS computational interference correction. To recapitulate the complexity of biological samples, we pooled tandem mass tag (TMT) labeled E. coli peptides at 1 : 3 : 10 ratios, and added in ∼20-fold more rat peptides as background, followed by the analysis of two dimensional liquid chromatography (LC)-MS/MS. Systematic investigation show that quantitative interference was impacted by LC fractionation depth, MS isolation window and peptide loading amount. Exhaustive fractionation (320 × 4 h) can nearly eliminate the interference and achieve results comparable to the MS3-based method. Importantly, the interference in MS2 scans can be estimated by the intensity of contaminated y1 product ions, and we thus developed an algorithm to correct reporter ion ratios of tryptic peptides. Our data indicate that intermediate fractionation (40 × 2 h) and y1 ion-based correction allow accurate and deep TMT profiling of more than 10,000 proteins, which represents a straightforward and affordable strategy in isobaric labeling proteomics.
Heme oxygenase-1 (HO-1) is a cytoprotective protein that catalyzes the degradation of heme to biliverdin, iron, and carbon monoxide (CO). In the present study, we found that endoplasmic reticulum (ER) stress induced by a variety of experimental agents stimulated a time-and concentration-dependent increase in HO-1 mRNA and protein in vascular smooth muscle cells (SMC). The induction of HO-1 by ER stress was blocked by actinomycin D or cycloheximide and was independent of any changes in HO-1 mRNA stability. Luciferase reporter assays indicated that ER stress stimulated HO-1 promoter activity via the antioxidant response element. Moreover, ER stress induced the nuclear import of Nrf2 and the binding of Nrf2 to the HO-1 antioxidant response element. Interestingly, ER stress stimulated SMC apoptosis, as demonstrated by annexin V binding, caspase-3 activation, and DNA laddering. The induction of apoptosis by ER stress was potentiated by HO inhibition, whereas it was prevented by addition of HO substrate. In addition, exposure of SMC to exogenously administered CO inhibited ER stress-mediated apoptosis, and this was associated with a decrease in the expression of the proapoptotic protein, GADD153. In contrast, the other HO-1 products failed to block apoptosis or GADD153 expression during ER stress. These results demonstrated that ER stress is an inducer of HO-1 gene expression in vascular SMC and that HO-1-derived CO acts in an autocrine fashion to inhibit SMC apoptosis. The capacity of ER stress to stimulate the HO-1/CO system provides a novel mechanism by which this organelle regulates cell survival.
Since apoptosis of endothelial cells (ECs) plays an important role in the pathogenesis of atherosclerosis, we investigated the e¡ect of cyclic stretch on EC apoptosis. Application of moderate, physiologic levels of cyclic stretch (6^10% at 1 Hz) inhibited EC apoptosis. This anti-apoptotic e¡ect was dependent on the activation of phosphatidylinositol 3-kinase and associated with the activation of Akt and the phosphorylation of Bad. Interestingly, a higher potentially pathologic level of cyclic stretch (20% at 1 Hz) stimulated EC apoptosis. The ability of physiologic cyclic stretch to inhibit EC apoptosis may provide a previously unrecognized mechanism by which hemodynamic forces exert an anti-atherogenic e¡ect. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.