To clarify the processes involved in plant immunity, we have isolated and characterized a single recessive Arabidopsis mutant, cad1 (constitutively activated cell death 1), which shows a phenotype that mimics the lesions seen in the hypersensitive response (HR). This mutant shows spontaneously activated expression of pathogenesis-related (PR) genes, and leading to a 32-fold increase in salicylic acid (SA). Inoculation of cad1 mutant plants with Pseudomonas syringae pv tomato DC3000 shows that the cad1 mutation results in the restriction of bacterial growth. Cloning of CAD1 reveals that this gene encodes a protein containing a domain with significant homology to the MACPF (membrane attack complex and perforin) domain of complement components and perforin proteins that are involved in innate immunity in animals. Furthermore, cell death is suppressed in transgenic cad1 plants expressing nahG, which encodes an SA-degrading enzyme. We therefore conclude that the CAD1 protein negatively controls the SA-mediated pathway of programmed cell death in plant immunity.
SummaryVirus-induced gene silencing (VIGS) is a powerful tool for functional analysis of genes in plants. A wide-host-range VIGS vector, which was developed based on the Cucumber mosaic virus (CMV), was tested for its ability to silence endogenous genes involved in flavonoid biosynthesis in soybean. Symptomless infection was established using a pseudorecombinant virus, which enabled detection of specific changes in metabolite content by VIGS. It has been demonstrated that the yellow seed coat phenotype of various
The hormonal action of jasmonate in plants is controlled by the precise balance between its biosynthesis and catabolism. It has been shown that jasmonyl-L-isoleucine (JA-Ile) is the bioactive form involved in the jasmonate-mediated signaling pathway. However, the catabolism of JA-Ile is poorly understood. Although a metabolite, 12-hydroxyJA-Ile, has been characterized, detailed functional studies of the compound and the enzyme that produces it have not been conducted. In this report, the kinetics of wound-induced accumulation of 12-hydroxyJA-Ile in plants were examined, and its involvement in the plant wound response is described. Candidate genes for the catabolic enzyme were narrowed down from 272 Arabidopsis Cyt P450 genes using Arabidopsis mutants. The candidate gene was functionally expressed in Pichia pastoris to reveal that CYP94B3 encodes JA-Ile 12-hydroxylase. Expression analyses demonstrate that expression of CYP94B3 is induced by wounding and shows specific activity toward JA-Ile. Plants grown in medium containing JA-Ile show higher sensitivity to JA-Ile in cyp94b3 mutants than in wild-type plants. These results demonstrate that CYP94B3 plays a major regulatory role in controlling the level of JA-Ile in plants.
Background: Accumulation of the plant hormone jasmonoyl-L-isoleucine (JA-Ile) is tightly controlled to prevent overactivation of defense responses. Results: Cytochrome P450 94s (CYP94s) with distinct tissue expression patterns localize to ER and oxidize JA-Ile to a dicarboxy derivative that fails to assemble JA-Ile co-receptor complexes. Conclusion: Sequential CYP94-catalyzed oxidations block receptor activation and signaling. Significance: P450s inactivate fatty acid-derived signals in both plants and animals.
To understand the machinery underlying a tomato cultivar harboring the Hero A gene against cyst nematode using microarrays, we first analyzed tomato gene expression in response to potato cyst nematode (PCN; Globodera rostochiensis) during the early incompatible and compatible interactions at 3 and 7 days post-inoculation (dpi). Transcript levels of the phenylalanine ammonia lyase (PAL) and Myb-related genes were up-regulated at 3 dpi in the incompatible interaction. Transcription of the genes encoding pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) was also up-regulated at 3 dpi in the incompatible interaction. On the other hand, the four genes (PAL, Myb, PDC and ADH) were down-regulated in the compatible interaction at 3 dpi. When the expression levels of several pathogenesis-related (PR) protein genes in tomato roots were compared between the incompatible and compatible interactions, the salicylic acid (SA)-dependent PR genes were found to be induced in the incompatible interaction at 3 dpi. The PR-1(P4) transcript increased to an exceptionally high level at 3 dpi in the cyst nematode-infected resistant plants compared with the uninoculated controls. The free SA levels were elevated to similar levels in both incompatible and compatible interactions. We then confirmed that PR-1(P4) was not significantly induced in the NahG tomato harboring the Hero A gene, compared with the resistant cultivar. We thus found that PR-1(P4) was a hallmark for the cultivar resistance conferred by Hero A against PCN and that nematode parasitism resulted in the inhibition of the SA signaling pathway in the susceptible cultivars.
HighlightWound-inducible and ER-located amidohydrolases with overlapping substrate specificities for IAA– and JA–amino acid conjugates regulate the production and destruction of active auxin and JA signals in wounded leaves.
The synthesis of JA-Ile was catalysed by JA-Ile synthase, which is a member of the group I GH3 family of proteins. Here, we showed evidence that OsGH3.5 (OsJAR1) and OsGH3.3 (OsJAR2) are the functional JA-Ile synthases in rice, using recombinant proteins. The expression levels of OsJAR1 and OsJAR2 were induced in response to wounding with the concomitant accumulation of JA-Ile. In contrast, only the expression of OsJAR1 was associated with the accumulation of JA-Ile after blast infection. Our data suggest that these two JA-Ile synthases are differentially involved in the activation of JA signalling in response to wounding and pathogen challenge in rice.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.