Inflammation is a biological response of the immune system that can be triggered by a variety of factors, including pathogens, damaged cells and toxic compounds. These factors may induce acute and/or chronic inflammatory responses in the heart, pancreas, liver, kidney, lung, brain, intestinal tract and reproductive system, potentially leading to tissue damage or disease. Both infectious and non-infectious agents and cell damage activate inflammatory cells and trigger inflammatory signaling pathways, most commonly the NF-κB, MAPK, and JAK-STAT pathways. Here, we review inflammatory responses within organs, focusing on the etiology of inflammation, inflammatory response mechanisms, resolution of inflammation, and organ-specific inflammatory responses.
Glutamine metabolism has been proved to be dysregulated in many cancer cells, and is essential for proliferation of most cancer cells, which makes glutamine an appealing target for cancer therapy. In order to be well used by cells, glutamine must be transported to cells by specific transporters and converted to glutamate by glutaminase. There are currently several drugs that target glutaminase under development or clinical trials. Also, glutamine metabolism restriction has been proved to be effective in inhibiting tumor growth both in vivo and vitro through inducing apoptosis, growth arrest and/or autophagy. Here, we review recent researches about glutamine metabolism in cancer, and cell death induced by targeting glutamine, and their potential roles in cancer therapy.
The morphological and cytochemical studies of peripheral blood cells of Schizothorax prenanti were studied by light and electron microscopy. Erythrocytes, thrombocytes and three types of leucocytes, lymphocytes, neutrophils and monocytes, were distinguished and characterized. In addition to mature erythrocytes, immature and dividing erythrocytes were observed. A few organelles such as mitochondria were distributed in the cytoplasm of erythrocytes. Lymphocytes with heavily clumped heterochromatic nucleus and minimal cytoplasm were classified into small and large lymphocytes. Three different populations of granules, with distinctive ultrastructural aspect, were observed in neutrophils. Monocytes were the fewest leucocytes possessing rich organelles, phagocytized materials and vacuoles. Thrombocytes with various types were the most abundant blood cells among leucocytes and contained a prominent nucleus with dense bands of heterochromatin and many cytoplasmic vacuoles. Periodic acid-Schiff staining was positive in neutrophils, monocytes, lymphocytes and thrombocytes, but not in erythrocytes. Peroxidase-positive staining was observed in neutrophils and monocytes, but not in erythrocytes, lymphocytes and thrombocytes. Only neutrophils were positive for oil red O. Except for erythrocytes, the other blood cells stained positively for acid phosphatase. Only neutrophils and monocytes were positive for α-naphthyl acetate esterase. None of the cells studied were positive for alkaline phosphatase. The morphologic and cytochemical features of blood cells of S. prenanti are similar to those of other fish. This investigation may be helpful as a tool to monitor the health status of cultured S. prenanti and will grant early detection of clinical pathology.
The aim of this study was to investigate the possible protective role of sodium selenite on aflatoxin B1-induced oxidative stress and apoptosis in spleen of broilers. Two hundred one-day-old male broilers, divided into five groups, were fed with basal diet (control group), 0.3 mg/kg AFB1 (AFB1 group), 0.3 mg/kg AFB1 + 0.2 mg/kg Se (+Se group I), 0.3 mg/kg AFB1 + 0.4 mg/kg Se (+Se group II) and 0.3 mg/kg AFB1 + 0.6 mg/kg Se (+Se group III), respectively. According to biochemical assays, AFB1 significantly decreased the activities of glutathione peroxidase, total superoxide dismutase, glutathione reductase, catalase and the level of glutathione hormone, while it increased the level of malondialdehyde. Moreover, AFB1 increased the percentage of apoptosis cells by flow cytometry and the occurrence of apoptotic cells by TUNEL assay. Simultaneous supplementation with sodium selenite restored these parameters to be close to those in control group. In conclusion, sodium selenite exhibited protective effects on AFB1-induced splenic toxicity in broilers by inhibiting oxidative stress and excessive apoptosis.
The purpose of the present study was to investigate the oxidative damage and apoptosis induced by aflatoxin B1 (AFB1) in spleen of broilers. A total of 200 one-day-old avian male broilers were randomly divided into 4 equal groups of 50 each and were fed for 21 days as follows: a control diet and three AFB1 diets containing 0.15, 0.3, and 0.6 mg AFB1/kg diet. Consumption of AFB1 diets induced oxidative stress in the spleen of chicken as evidenced by reduced glutathione peroxidase, glutathione reductase, and catalase activities, decreased glutathione contents, and increased malondialdehyde contents in explaining the pathogenesis. Flow cytometer method and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling assay revealed that the apoptotic splenocytes were increased in AFB1 groups. The results suggest that AFB1 induced excessive apoptosis of splenic lymphocytes, which is correlated with increased oxidative stress. The present results may be helpful for explaining the pathogenesis of AFB1-induced immunosuppression.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.