a Silica nanoparticles are under development for intracellular drug delivery applications but can also have cytotoxic effects including cell membrane damage. In this study, we investigated the interactions of silica nanospheres of different size, surface chemistry and biocoating with membranes of phosphatidylcholine lipids. In liposome leakage assays many, but not all, of these nanoparticles induced dose-dependent dye leakage, indicative of membrane perturbation. It was found that 200 and 500 nm native-silica, aminated and carboxylated nanospheres induce near-total dye release from zwitterionic phosphatidylcholine liposomes at a particle/liposome ratio of B1, regardless of their surface chemistry, which we interpret as particlesupported bilayer formation following a global rearrangement of the vesicular membrane. In contrast, 50 nm diameter native-silica nanospheres did not induce total dye leakage below a particle/liposome ratio of B8, whereas amination or carboxylation, respectively, strongly reduced or prevented dye release. We postulate that for the smaller nanospheres, strong silica-bilayer interactions are manifested as bilayer engulfment of membrane-adsorbed particles, with localized lipid depletion eventually leading to collapse of the vesicular membrane. Protein coating of the particles considerably reduced dye leakage and lipid bilayer coating prevented dye release all together, while the inclusion of 33% anionic lipids in the liposomes reduced dye leakage for both native-silica and aminated surfaces. These results, which are compared with the effect of polystyrene nanoparticles and other engineered nanomaterials on lipid bilayers, and which are discussed in relation to nanosilica-induced cell membrane damage and cytotoxicity, indicate that a native-silica nanoparticle surface chemistry is a particularly strong membrane interaction motif.
An ideal n-i-p perovskite solar cell employing a Pb free CH3NH3SnI3 absorber layer was suggested and modelled. A comparative study for different electron transport materials has been performed for three devices keeping CuO hole transport material (HTL) constant. SCAPS-1D numerical simulator is used to quantify the effects of amphoteric defect based on CH3NH3SnI3 absorber layer and the interface characteristics of both the electron transport layer (ETL) and hole transport layer (HTL). The study demonstrates that amphoteric defects in the absorber layer impact device performance significantly more than interface defects (IDL). The cell performed best at room temperature. Due to a reduction in Voc, PCE decreases with temperature. Defect tolerance limit for IL1 is 1013 cm−3, 1016 cm−3 and 1012 cm−3 for structures 1, 2 and 3 respectively. The defect tolerance limit for IL2 is 1014 cm−3. With the proposed device structure FTO/PCBM/CH3NH3SnI3/CuO shows the maximum efficiency of 25.45% (Voc = 0.97 V, Jsc = 35.19 mA/cm2, FF = 74.38%), for the structure FTO/TiO2/CH3NH3SnI3/CuO the best PCE is obtained 26.92% (Voc = 0.99 V, Jsc = 36.81 mA/cm2, FF = 73.80%) and device structure of FTO/WO3/CH3NH3SnI3/CuO gives the maximum efficiency 24.57% (Voc = 0.90 V, Jsc = 36.73 mA/cm2, FF = 74.93%) under optimum conditions. Compared to others, the FTO/TiO2/CH3NH3SnI3/CuO system provides better performance and better defect tolerance capacity.
In this paper, an industrial grade adaptive control scheme is proposed for a micro-grid integrated dual active bridge driven battery management system (DIBMS). A benchmark industrial grade adaptive control scheme depends on two factors namely robustness and computational resource utilization when such controllers are implemented over processors. The mathematical model of DIBMS system is nonlinear, thus for desired response, non-linear controllers based on sliding mode variable structure control theory suits it well for the state regulation problem of DIBMS, however such controllers utilize high computational resources when practically implemented over processors. Keeping in view the above performance indices, this paper proposes an industrial grade computationally efficient and finite time adaptive robust convergent control for DIBMS system. A proportional integral (PI) scheme is used as central control unit and Hebbian algorithm with double integration of the state error is introduced for online tuning the gains of central control unit. The robustness and computational resource efficiency of the proposed control paradigm is validated using a laboratory scale test bench through TI Launchpad (TMS320F28379D). The superiority of the proposed AI based PI control paradigm is compared with classical PI, integer order sliding mode control (SMC), and fractional order SMC (FOSMC) in terms of computational resource utilization and robustness under all test conditions.
In this study, phytochemical assisted nanoparticle synthesis was performed using Muntingia calabura leaf extracts to produce copper oxide nanoparticles (CuO NPs) with interesting morphology. Scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis of the biosynthesized CuO NPs reveal formation of distinct, homogeneous, and uniform sized CuO nanorods structure with thickness and length of around 23 nm and 79 nm, respectively. Based on Fourier-transform infrared (FTIR) analysis, the unique combinations of secondary metabolites such as flavonoid and polyphenols in the plant extract are deduced to be effective capping agents to produce nanoparticles with unique morphologies similar to conventional chemical synthesis. X-ray diffraction (XRD) analysis verified the monoclinical, crystalline structure of the CuO NPs. The phase purity and chemical identity of the product was consolidated via X-Ray photoelectron spectroscopy (XPS) and Raman spectroscopic data which indicate the formation of a single phase CuO without the presence of other impurities. The direct and indirect optical band gap energies of the CuO nanorods were recorded to be 3.65 eV and 1.42 eV.
In smart grid, energy management is an indispensable for reducing energy cost of consumers while maximizing user comfort and alleviating the peak to average ratio and carbon emission under real time pricing approach. In contrast, the emergence of bidirectional communication and power transfer technology enables electric vehicles (EVs) charging/discharging scheduling, load shifting/scheduling, and optimal energy sharing, making the power grid smart. With this motivation, efficient energy management model for a microgrid with ant colony optimization algorithm to systematically schedule load and EVs charging/discharging of is introduced. The smart microgrid is equipped with controllable appliances, photovoltaic panels, wind turbines, electrolyzer, hydrogen tank, and energy storage system. Peak load, peak to average ratio, cost, energy cost, and carbon emission operation of appliances are reduced by the charging/discharging of electric vehicles, and energy storage systems are scheduled using real time pricing tariffs. This work also predicts wind speed and solar irradiation to ensure efficient energy optimization. Simulations are carried out to validate our developed ant colony optimization algorithm-based energy management scheme. The obtained results demonstrate that the developed efficient energy management model can reduce energy cost, alleviate peak to average ratio, and carbon emission.
Electrocatalytic water splitting is a promising solution to resolve the global energy crisis. Tuning the morphology and particle size is a crucial aspect in designing a highly efficient nanomaterials-based electrocatalyst for water splitting. Herein, green synthesis of nickel oxide nanoparticles using phytochemicals from three different sources was employed to synthesize nickel oxide nanoparticles (NiOx NPs). Nickel (II) acetate tetrahydrate was reacted in presence of aloe vera leaves extract, papaya peel extract and dragon fruit peel extract, respectively, and the physicochemical properties of the biosynthesized NPs were compared to sodium hydroxide (NaOH)-mediated NiOx. Based on the average particle size calculation from Scherrer’s equation, using X-ray diffractograms and field-emission scanning electron microscope analysis revealed that all three biosynthesized NiOx NPs have smaller particle size than that synthesized using the base. Aloe-vera-mediated NiOx NPs exhibited the best electrocatalytic performance with an overpotential of 413 mV at 10 mA cm−2 and a Tafel slope of 95 mV dec−1. Electrochemical surface area (ECSA) measurement and electrochemical impedance spectroscopic analysis verified that the high surface area, efficient charge-transfer kinetics and higher conductivity of aloe-vera-mediated NiOx NPs contribute to its low overpotential values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.