Activator protein 1 (AP-1) (Fos/Jun) is a transcriptional regulator composed of members of the Fos and Jun families of DNA binding proteins. The functions of AP-1 were initially studied in mouse development as well as in the whole organism through conventional transgenic approaches, but also by gene targeting using knockout strategies. The importance of AP-1 proteins in disease pathways including the inflammatory response became fully apparent through conditional mutagenesis in mice, in particular when employing gene inactivation in a tissue-specific and inducible fashion. Besides the well-documented roles of Fos and Jun proteins in oncogenesis, where these genes can function both as tumor promoters or tumor suppressors, AP-1 proteins are being recognized as regulators of bone and immune cells, a research area termed osteoimmunology. In the present article, we review recent data regarding the functions of AP-1 as a regulator of cytokine expression and an important modulator in inflammatory diseases such as rheumatoid arthritis, psoriasis and psoriatic arthritis. These new data provide a better molecular understanding of disease pathways and should pave the road for the discovery of new targets for therapeutic applications. IntroductionThe transcription factor activator protein 1 (AP-1) consists of dimers composed of members of the Jun, Fos and activating transcription factor protein families. In contrast to the Fos proteins (Fos, FosB, Fra-1 and Fra-2), which can only heterodimerize with members of the Jun family, Jun family members (Jun, JunB and JunD) can homodimerize and heterodimerize with Fos members [1]. In addition, some members of the activating transcription factor and cAMP response elementbinding protein families also dimerize with the core members of the AP-1 family to regulate a broad variety of genes [2] by binding to their promoter and enhancer regions (Figure 1).Although members of the Jun and Fos families share a high degree of structural homology, the individual AP-1 dimers exert significant differences in their DNA binding affinity and their capability to activate or suppress gene expression [3]. AP-1 converts extracellular signals of evolutionary conserved signaling pathways like mitogen-activated protein kinase, transforming growth factor beta and Wnt into changes in the expression of specific target genes that harbor AP-1 binding sites. Growth factors, neurotransmitters, polypeptide hormones, bacterial and viral infections as well as a variety of physical and chemical stresses employ AP-1 to translate external stimuli both into short-term and long-term changes of gene expression. These stimuli activate mitogen-activated protein kinase cascades that enhance AP-1 activity; for example, through phosphorylation of distinct substrates [4]. Activator protein 1 functions in miceMany important insights regarding the specific functions of AP-1 proteins in development and disease have been obtained from genetically modified mice and the cells derived thereof (Table 1) [1,2]. In the following s...
Psoriasis is a common heterogeneous inflammatory skin disease with a complex pathophysiology and limited treatment options. Here we performed proteomic analyses of human psoriatic epidermis and found S100A8-S100A9, also called calprotectin, as the most upregulated proteins, followed by the complement component C3. Both S100A8-S100A9 and C3 are specifically expressed in lesional psoriatic skin. S100A9 is shown here to function as a chromatin component modulating C3 expression in mouse and human cells by binding to a region upstream of the C3 start site. When S100A9 was genetically deleted in mouse models of skin inflammation, the psoriasis-like skin disease and inflammation were strongly attenuated, with a mild immune infiltrate and decreased amounts of C3. In addition, inhibition of C3 in the mouse model strongly reduced the inflammatory skin disease. Thus, S100A8-S100A9 can regulate C3 at the nuclear level and present potential new therapeutic targets for psoriasis.
Inflammation is a physiological response of the body to tissue injury, pathogen invasion and irritants. In the course of inflammation, immune cells of the innate and/or adaptive immune system are activated and recruited to the site of inflammation. Attraction and activation of immune cells is regulated by a variety of different cytokines and chemokines, which are predominantly regulated by transcription factors such as AP-1, NF-κB, NFATs and STATs. The evidence that Jun/AP-1 proteins control inflammation in the skin is summarised in this article. Genetic mouse models have demonstrated that a loss of Jun/AP-1 expression in epidermal cells controls cytokine expression through transcriptional and post-transcriptional pathways. The absence of JunB in epithelial K5-expressing tissues leads to a multiorgan disease, which is characterised by increased levels of granulocyte colony-stimulating factor and interleukin 6. Deletion of both JunB and c-Jun, in a constitutive or inducible manner, leads to perinatal death of newborn pups and to a psoriasis-like disease in adults, in which tumour necrosis factor α and the TIMP-3/TACE pathway have central roles. The loss or reduction of Jun expression in the epidermis relieves a block on cytokine expression. As a consequence, the increased levels of cytokines in mice lead to diseases reminiscent of psoriasis and systemic lupus erythematosus in human patients. New targets identified in mouse models, together with investigations on human samples, will provide important new avenues for therapeutic interventions in psoriasis and other inflammatory skin diseases.
Psoriasis is a common inflammatory skin disease of unknown etiology, for which there is no cure. This heterogeneous, cutaneous, inflammatory disorder is clinically characterized by prominent epidermal hyperplasia and a distinct inflammatory infiltrate. Crosstalk between immunocytes and keratinocytes, which results in the production of cytokines, chemokines and growth factors, is thought to mediate the disease. Given that psoriasis is only observed in humans, numerous genetic approaches to model the disease in mice have been undertaken. In this Review, we describe and critically assess the mouse models and transplantation experiments that have contributed to the discovery of novel disease-relevant pathways in psoriasis. Research performed using improved mouse models, combined with studies employing human cells, xenografts and patient material, will be key to our understanding of why such distinctive patterns of inflammation develop in patients with psoriasis. Indeed, a combination of genetic and immunological investigations will be necessary to develop both improved drugs for the treatment of psoriasis and novel curative strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.