High-resolution Airborne Wide-band Camera (HAWC[Formula: see text]) is the facility far-infrared imager and polarimeter for SOFIA, NASA’s Stratospheric Observatory for Infrared Astronomy. It is designed to cover the portion of the infrared spectrum that is completely inaccessible to ground-based observatories and which is essential for studies of astronomical sources with temperatures between tens and hundreds of degrees Kelvin. Its ability to make polarimetric measurements of aligned dust grains provides a unique new capability for studying interstellar magnetic fields. HAWC[Formula: see text] began commissioning flights in April 2016 and was accepted as a facility instrument in early 2018. In this paper, we describe the instrument, its operational procedures, and its performance on the observatory.
In scientific and engineering disciplines, from academia to industry, there is an increasing need for the development of custom software to perform experiments, construct systems, and develop products. The natural mindset initially is to shortcut and bypass all overhead and process rigor in order to obtain an immediate result for the problem at hand, with the misconception that the software will simply be thrown away at the end. In a majority of the cases, it turns out the software persists for many years, and likely ends up in production systems for which it was not initially intended. In the current study, a framework that can be used in both industry and academic applications mitigates underlying problems associated with developing scientific and engineering software. This results in software that is much more maintainable, documented, and usable by others, specifically allowing new users to extend capabilities of components already implemented in the framework. There is a multidisciplinary need in the fields of imaging science, computer science, and software engineering for a unified implementation model, which motivates the development of an abstracted software framework. Structure from motion (SfM) has been identified as one use case where the abstracted workflow framework can improve research efficiencies and eliminate implementation redundancies in scientific fields. The SfM process begins by obtaining 2D images of a scene from different perspectives. Features from the images are extracted and correspondences are established. This provides a sufficient amount of information to initialize the problem for fully automated processing. Transformations are established between views, and 3D points are established via triangulation algorithms. The parameters for the camera models for all views / images are solved through bundle adjustment, establishing a highly consistent point cloud. The initial sparse point cloud and camera matrices are used to generate a dense point cloud through patch based techniques or densification algorithms such as Semi-Global Matching (SGM). The point cloud can be iii I would like to thank my advisor, Dr. Harvey Rhody, for his willingness to take me on as a research student and develop a thesis topic that was well-suited for my interests and background. I was fortunate to have taken many courses with Dr. Rhody, and it was a pleasure getting to know him as my thesis advisor throughout the course of our research. His personal and professional advice have been invaluable to me. I'm always amazed at how often I discover the applicability and foresight of his abstractions in practice. Thanks to my committee members, Dr. Carl Salvaggio and Dr. Derek Walvoord. After taking my first class with Carl, it became obvious that he is one of the exceptional teachers at RIT. He truly cares about his students and puts a great deal of effort into lectures and class material. He is student-focused and goes out of his way to make sure they succeed. Additionally, I am very grateful not only to have Derek on...
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.