Trismus-pseudocamptodactyly syndrome (TPS) is a rare autosomal dominant distal arthrogryposis (DA) characterized by an inability to open the mouth fully (trismus) and an unusual camptodactyly of the fingers that is apparent only upon dorsiflexion of the wrist (i.e., pseudocamptodactyly). TPS is also known as Dutch-Kentucky syndrome because a Dutch founder mutation is presumed to be the origin of TPS cases in the Southeast US, including Kentucky. To date only a single mutation, p.R674Q, in MYH8 has been reported to cause TPS. Several individuals with this mutation also had a so-called "variant" of Carney complex, suggesting that the pathogenesis of TPS and Carney complex might be shared. We screened MYH8 in four TPS pedigrees, including the original Dutch family in which TPS was reported. All four TPS families shared the p.R674Q substitution. However, haplotype analysis revealed that this mutation has arisen independently in North American and European TPS pedigrees. None of the individuals with TPS studied had features of Carney complex, and p.R674Q was not found in 49 independent cases of Carney complex that were screened. Our findings show that distal arthrogryposis syndromes share a similar pathogenesis and are, in general, caused by disruption of the contractile complex of muscle.
We report on a 15-year-old black boy with severe mental retardation, multiple congenital anomalies, and a supernumerary ring chromosome mosaicism. Fluorescence in situ hybridization with a chromosome 1 painting probe (pBS1) identified the ring as derived from chromosome 1. The karyotype was 46,XY/47,XY,+r(1)(p13q23). A review showed 8 reports of ring chromosome 1. In 5 cases, the patients had a non-supernumerary ring chromosome 1 resulting in partial monosomies of the short and/or long arm of chromosome 1. In 3 cases, the presence of a supernumerary ring resulted in partial trisomy of different segments of chromosome 1. In one of these cases the supernumerary ring was composed primarily of the centromere and the heterochromatic region of chromosome 1, resulting in normal phenotype. Our patient represents the third report of a supernumerary ring chromosome 1 resulting in abnormal phenotype.
Neu-Laxova syndrome is a rare autosomal recessive disorder characterized by ichthyosis, intrauterine growth retardation, microcephaly, short neck, central nervous system abnormalities, hypoplastic or atelectatic lungs, limb deformities, edema, polyhydramnios, and short umbilical cord. Abnormal facial features include sloping forehead, hypertelorism, severe ectropion, proptosis, malformed ears, flat nose, and micrognathia. A necropsy study of a male infant with Neu-Laxova syndrome is described. Cleft palate and ambiguous external genitalia were present in addition to anomalies characteristic of Neu-Laxova syndrome. The clinical manifestations are compared with those of the 40 previously reported cases.
Duplication within Xp21 causes female or intersexual development in human embryos with an XY chromosome complement. We have mapped the responsible gene, SRVX (sex reversal X), in XY-sex-reversed maternal half siblings who had inherited the duplication from their mother. The limited size of the duplication in our cases, relative to its extent in other similar cases, allows assignment of the SRVX locus to Xp21.2-->p22.11. We infer that SRVX is part of a pathway of sex-determining genes that includes SRY and SRA1, the latter recently assigned to chromosome 17q. If mutation of SRA1 or SRVX can reverse the sex of the XY fetus, this would explain why mutation within SRY is found only sporadically in women with XY gonadal dysgenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.