Submicron bioactive glass fibers 70S30C (70 mol% SiO(2), 30 mol% CaO) acting as bone tissue scaffolds were fabricated by electrospinning method. The scaffold is a hierarchical pore network that consists of interconnected fibers with macropores and mesopores. The structure, morphological characterization and mechanical properties of the submicron bioactive glass fibers were studied by XRD, EDS, FIIR, SEM, N(2) gas absorption analyses and nanoindentation. The effect of the voltage on the morphology of electrospun bioactive glass fibers was investigated. It was found that decreasing the applied voltage from 19 to 7 kV can facilitate the formation of finer fibers with fewer bead defects. The hardness and Young's modulus of submicron bioactive glass fibers were measured as 0.21 and 5.5 GPa, respectively. Comparing with other bone tissue scaffolds measured by nanoindentation, the elastic modulus of the present scaffold was relatively high and close to the bone.
In this paper, environmentally friendly gelatin/β-cyclodextrin (β-CD) composite fiber adsorbents prepared by electrospinning were used for the removal of dyes from wastewater. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and a universal materials tester were employed to characterize the internal structures, surface morphologies and mechanical strength of the composite fiber adsorbents. Additionally, the fiber was evaluated as an adsorbent for the removal of methylene blue (MB) from aqueous solution. The effects of the raw material ratio, pH, temperature, concentration and adsorption time were studied. The results show that the gelatin/β-CD composite fiber adsorbents possess excellent mechanical strength and high adsorption efficiency for MB. The adsorption equilibrium and adsorption kinetics are well-described by the Langmuir isotherm model and the pseudo-second-order kinetic model, respectively. The theoretical maximum adsorption capacity is 47.4 mg·g−1. Additionally, after nine successive desorption-adsorption cycles, the removal rate is still over 70%. Moreover, the gelatin/β-CD composite fiber adsorbents exhibit excellent adsorption capability for basic fuchsin, gentian violet, brilliant blue R and malachite green dyes. Therefore, owing to the characteristics of degradability, low cost and high-efficiency, the gelatin/β-CD composite fiber can be used as an efficient adsorbent for the removal of dyes from wastewater.
In this paper, the facile synthesis of hybrid Fe O magnetic nanoparticles carrying helical poly(phenyl isocyanide) (PPI) arms via both "grafting from" and "grafting onto" strategies is reported. First, alkyne-Pd(II) catalysts are anchored onto the surface of the Fe O magnetic nanoparticle, which promote the polymerization of enantiopure phenyl isocyanide, affording the expected hybrid magnetic nanoparticle with Fe O in core and helical PPI as arms. The nanoparticle also exhibits highly optical activity due to the excess of one-handed helicity of the PPI arms. Moreover, the hybrid magnetic nanoparticle can be alternatively synthesized via "grafting onto" strategy. A triethoxysilanyl-terminated single handed helical PPI bearing l-alanine ester pendants is prepared and grafted onto the surface of Fe O nanoparticle. The generated hybrid magnetic nanoparticles show both magnetic character and optical activity. Taking advantage of these properties, they can be used in enantioselective crystallization of racemic threonine. The enantiomeric excess (ee) of the induced crystals is up to 93%. Moreover, the nanoparticles can be facilely recovered and recycle used for at least four times in enantioselective crystallization without significantly loss of its enantioselectivity.
As a degradable natural biomaterial, gelatin has good biocompatibility and nontoxicity, but gelatin is easily soluble in water which has limited its application.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.