Phloem-mobile insecticides are preferred to achieve economically useful activity. However, only a few phloem-mobile synthetic insecticides are available. One approach to converting nonmobile insecticides into phloem-mobile types is introducing sugar to the parent compound. To test whether the addition of a glucose group to a non-phloem-mobile insecticide enables conversion into phloem-mobile, N-[3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazol-5-yl]-1-(β-D-glucopyranosyl)-1H-1,2,3-triazole-4-methanamine (GTF) was prepared through click chemistry. A phloem-mobility test in Ricinus communis L. seedlings confirmed that GTF was mobile in the sieve tubes. Although GTF exhibited lower insecticidal activity against the third-instar larvae of Pzlutella xylostella than fipronil did, it can be reconverted into fipronil in adult plants of castor bean, thereby offsetting the decrease of insecticidal activity. Therefore, the presence of a glucose core confers phloem mobility to fipronil.
Some compounds containing glucose are absorbed via the monosaccharide transporters of the plasma membrane. A glucose-fipronil conjugate, N-[3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazol-5-yl]-1-(β-d-glucopyranosyl)-1H-1,2,3-triazole-4-methanamine (GTF), has been synthesized in our previous work. GTF exhibits moderate phloem mobility in Ricinus communis. In the current paper, we demonstrate that the uptake of GTF by Ricinus seedling cotyledon discs is partly mediated by an active carrier system (K(m)1 = 0.17 mM; V(max)1 = 2.2 nmol cm(-2) h(-1)). Four compounds [d-glucose, sucrose, phloridzin, and carbonyl cyanide m-chlorophenylhydrazone (CCCP)] were examined for their effect on GTF uptake. Phloridzin as well as CCCP markedly inhibit GTF uptake, and d-glucose weakly competes with it. The phloem transport of GTF in Ricinus seedlings is found to involve an active carrier-mediated mechanism that effectively contributes to the GTF phloem loading. The results prove that adding a glucose core is a reasonable and feasible approach to confer phloem mobility to fipronil by utilizing plant monosaccharide transporters.
Systemicity of agrochemicals is an advantageous property for controlling phloem sucking insects, as well as pathogens and pests not accessible to contact products. After the penetration of the cuticle, the plasma membrane constitutes the main barrier to the entry of an agrochemical into the sap flow. The current strategy for developing systemic agrochemicals is to optimize the physicochemical properties of the molecules so that they can cross the plasma membrane by simple diffusion or ion trapping mechanisms. The main problem with current systemic compounds is that they move everywhere within the plant, and this non‐controlled mobility results in the contamination of the plant parts consumed by vertebrates and pollinators. To achieve the site‐targeted distribution of agrochemicals, a carrier‐mediated propesticide strategy is proposed in this review. After conjugating a non‐systemic agrochemical with a nutrient (α‐amino acids or sugars), the resulting conjugate may be actively transported across the plasma membrane by nutrient‐specific carriers. By applying this strategy, non‐systemic active ingredients are expected to be delivered into the target organs of young plants, thus avoiding or minimizing subsequent undesirable redistribution. The development of this innovative strategy presents many challenges, but opens up a wide range of exciting possibilities. © 2018 Society of Chemical Industry
To test the effect of adding different monosaccharide groups to a non-phloem-mobile insecticide on the phloem mobility of the insecticide, a series of conjugates of different monosaccharides and fipronil were synthesized using the trichloroacetimidate method. Phloem mobility tests in castor bean ( Ricinus communis L.) seedlings indicated that the phloem mobility of these conjugates varied markedly. L-Rhamnose-fipronil and D-fucose-fipronil displayed the highest phloem mobility among all of the tested conjugates. Conjugating hexose, pentose, or deoxysugar to fipronil through an O-glycosidic linkage can confer phloem mobility to fipronil in R. communis L. effectively, while the -OH orientation of the monosaccharide substantially affected the phloem mobility of the conjugates.
The ability to visualize the movement of glycosyl insecticides contributes to learning their translocation and distribution in plants. In our present work, a novel fluorescent glucose-fipronil conjugate N-[3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazol-5-yl]-1-(2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-β-D-glucopyranosyl)-1H-1,2,3-triazole-4-methanamine (2-NBDGTF), was obtained via click chemistry. Disk uptake experiments showed that an active carrier-mediated system was involved in the 2-NBDGTF uptake process. Meanwhile, 2-NBDGTF exhibited comparable phloem mobility with GTF in castor bean seedlings. Visualization of 2-NBDGTF uptake and transport experiment showed that this fluorescent glucose-fipronil conjugate could be loaded into sieve tubes after transiting through epidermal cells and mesophyll cells and then translocate from cotyledon to hypocotyl via phloem in castor bean seedlings. The results above determined that it is a promising fluorescence tagging approach for revealing the activities of glycosyl insecticides and 2-NBDGTF is a reasonable and feasible fluorescent surrogate of GTF for tracing the distribution of glucose-fipronil conjugates.
Design and discovery of carrier-mediated modified pesticides are vital for reducing pesticide dosage and increasing utilization, yet it remains a great challenge due to limited insights into plant translocation mechanisms. Nanostructure/nanoparticle assisted laser desorption/ionization strategy has established itself as a preferential analytical tool for biological tissue analysis, whereas potential applications in plant sciences are hindered with regard to the inability to slice plant leaves and petals. Herein, we report gold nanoparticle (AuNP)-immersed paper imprinting mass spectrometry imaging (MSI) for the spatiotemporal visualization of pesticide translocation in plant leaves. This approach plays a dual role in preserving spatial information and improving ionization efficiency for pesticides regardless of imaging artifacts due to homogenous AuNP deposition. Using this MSI platform, we proposed the elaborate plant translocation mechanism of agrochemicals for the first time, which is currently poorly understood. The dynamic processes of carrier-mediated pesticides can be clearly visualized, including crossing of plasma membranes by transporters, translocation downward in stems through the phloem, diffusion to the xylem and, conversely, accumulation at margins of the treated leaves. Moreover, this AuNP-assisted paper imprinting method could be highly compatible with laser-based MSI instruments, expediting researches across a broad range of fields, especially in nanomaterial development and life sciences.
Aphis gossypii Glover is a major pest of cotton and can severely affect cotton yield and lint quality. In this study, the efficacy of sulfoxaflor applied via drip irrigation and foliar spray on controlling cotton aphids was evaluated in 2016 and 2017 in Xinjiang, China. The distribution of sulfoxaflor in cotton roots, stems, leaves, and aphids, as well as its effects on two natural enemies of aphids, were also investigated. Results showed that sulfoxaflor applied through drip irrigation mainly concentrated in leaves and provided effective control of cotton aphids for 40 days, compared to 20 days when applied through foliar spray. Furthermore, drip application resulted in much lower sulfoxaflor concentrations in aphids than foliar spray. As a result, ladybird beetle and lacewing populations were higher in drip applied plants than in foliar sprayed plants. Additionally, the cost of drip irrigation was lower than foliar spray as cotton plants are commonly irrigated via drip irrigation in Xinjiang. Our results showed that application of sulfoxaflor through drip irrigation is an effective way of controlling cotton aphids in Xinjiang due to a prolonged control period, safety to two natural enemies, and lower cost of application.
This study provides a potential strategy to optimize the substrate structure to enhance hydrolytic specificity in order to design appropriate phloem mobile pro-pesticides. © 2018 Society of Chemical Industry.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers