In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
Rapamycin, an antifungal macrolide antibiotic, mimics starvation conditions in Saccharomyces cerevisiae through activation of a general G0 program that includes widespread effects on translation and transcription. Macroautophagy, a catabolic membrane trafficking phenomenon, is a prominent part of this response. Two views of the induction of autophagy may be considered. In one, up-regulation of proteins involved in autophagy causes its induction, implying that autophagy is the result of a signal transduction mechanism leading from Tor to the transcriptional and translational machinery. An alternative hypothesis postulates the existence of a dedicated signal transduction mechanism that induces autophagy directly. We tested these possibilities by assaying the effects of cycloheximide and specific mutations on the induction of autophagy. We find that induction of autophagy takes place in the absence of de novo protein synthesis, including that of specific autophagy-related proteins that are up-regulated in response to rapamycin. We also find that dephosphorylation of Apg13p, a signal transduction event that correlates with the onset of autophagy, is also independent of new protein synthesis. Finally, our data indicate that autophagosomes that form in the absence of protein synthesis are significantly smaller than normal, indicating a role for de novo protein synthesis in the regulation of autophagosome expansion. Our results define the existence of a signal transduction-dependent nucleation step and a separate autophagosome expansion step that together coordinate autophagosome biogenesis.
We previously identified BET3 by its genetic interactions with BET1, a gene whose SNARE-like product acts in endoplasmic reticulum (ER)-to-Golgi transport. To gain insight into the function of Bet3p, we added three c-myc tags to its C-terminus and immunopurified this protein from a clarified detergent extract. Here we report that Bet3p is a member of a large complex (~800 kDa) that we call TRAPP (transport protein particle). We propose that TRAPP plays a key role in the targeting and/or fusion of ER-to-Golgi transport vesicles with their acceptor compartment. The localization of Bet3p to the cis-Golgi complex, as well as biochemical studies showing that Bet3p functions on this compartment, support this hypothesis. TRAPP contains at least nine other constituents, five of which have been identified and shown to be highly conserved novel proteins.
Autophagy is a catabolic membrane-trafficking process that occurs in all eukaryotic cells and leads to the hydrolytic degradation of cytosolic material in the vacuolar or lysosomal lumen. Mitophagy, a selective form of autophagy targeting mitochondria, is poorly understood at present. Several recent reports suggest that mitophagy is a selective process that targets damaged mitochondria, whereas other studies imply a role for mitophagy in cell death processes. In a screen for protein phosphatase homologs that functionally interact with the autophagy-dedicated protein kinase Atg1p in yeast, we have identified Aup1p, encoded by Saccharomyces cerevisiae reading frame YCR079w. Aup1p is highly similar to a family of protein phosphatase homologs in animal cells that are predicted to localize to mitochondria based on sequence analysis. Interestingly, we found that Aup1p localizes to the mitochondrial intermembrane space and is required for efficient mitophagy in stationary phase cells. Viability studies demonstrate that Aup1p is required for efficient survival of cells in prolonged stationary phase cultures, implying a pro-survival role for mitophagy under our working conditions. Our data suggest that Aup1p may be part of a signal transduction mechanism that marks mitochondria for sequestration into autophagosomes.Mitochondria perform numerous essential physiological functions in all eukaryotic cells. Apart from their role in oxidative phosphorylation and fatty acid oxidation, they are also essential for biosynthesis of central building blocks such as amino acids and nucleotides. At the same time, mitochondria are a threat to cellular well-being. Mitochondria are a major source of reactive oxygen species in cells. In addition, disruption of mitochondrial compartmentalization results in leakage of cytochrome c and other cytotoxic factors, and mitochondria with defective chemiosmotic coupling can cause an energy drain on the cell. Accumulation of mitochondrial genetic variation and mitochondrial damage are widely considered to underlie many age-related metabolic diseases and late-onset genetic disorders (1, 2). It is commonly postulated that in normal cells defective mitochondria are broken down in the lysosomal compartment through autophagy, and inability to clear defective mitochondria is thought to underlie numerous pathological conditions (3, 4).Autophagy is a set of catabolic membrane trafficking mechanisms that allow import of cytosolic material into the vacuole/ lysosome. The best understood form of autophagy is macroautophagy, in which intracellular membranes of undetermined origin engulf cytosolic material to form a double or multi-bilayer membrane bound intermediate called the autophagosome (reviewed in Refs. 3 and 5-8). This intermediate then goes on to fuse with the vacuole/lysosome, releasing a single-bilayer bound vesicle called an autophagic body into the lumen of the lytic compartment where it is broken down, releasing the cytosol-derived material for further degradation to biosynthetic building blocks. Cl...
The Cvt pathway is a biosynthetic transport route for a distinct subset of resident yeast vacuolar hydrolases, whereas macroautophagy is a nonspecific degradative mechanism that allows cell survival during starvation. Yet, these two vacuolar trafficking pathways share a number of identical molecular components and are morphologically very similar. For example, one of the hallmarks of both pathways is the formation of double-membrane cytosolic vesicles that sequester cargo before vacuolar delivery. The origin of the vesicle membrane has been controversial and various lines of evidence have implicated essentially all compartments of the endomembrane system. Despite the analogies between the Cvt pathway and autophagy, earlier work has suggested that the origin of the engulfing vesicle membranes is different; the endoplasmic reticulum is proposed to be required only for autophagy. In contrast, in this study we demonstrate that the endoplasmic reticulum and/or Golgi complex, but not endosomal compartments, play an important role for both yeast transport routes. Along these lines, we demonstrate that Berkeley bodies, a structure generated from the Golgi complex in sec7 cells, are immunolabeled with Atg8, a structural component of autophagosomes. Finally, we also show that none of the yeast t-SNAREs are located at the preautophagosomal structure, the presumed site of double-membrane vesicle formation. Based on our results, we propose two models for Cvt vesicle biogenesis. INTRODUCTIONThe lysosome/vacuole is the major cellular center for degradation, recycling, and storage of biological constituents. Several well-characterized transport routes are implicated in protein delivery to this organelle during normal growth conditions. These pathways are conserved among eukaryotic organisms, but work in the yeast Saccharomyces cerevisiae has had a major impact on their characterization and in the identification of the molecular machinery (Conibear and Stevens, 1998). The route called the alkaline phosphatase pathway provides a direct transport connection between the Golgi complex and the vacuole Piper et al., 1997). A second itinerary from the Golgi complex to the vacuole passes through the late endosome and is known as the carboxypeptidase Y pathway (Piper et al., 1995;Babst et al., 1998;Conibear and Stevens, 1998). These two pathways are required for the biogenesis and maintenance of vacuoles, whereas a third route, endocytosis, has a catabolic function. Endocytosis mediates the downregulation of plasma membrane proteins by delivering them via the late endosome to the vacuole for degradation (Hicke, 1999;Katzmann et al., 2002). Before reaching the late endosome, these proteins pass through the early endosome where some components are recycled back to the cell surface (Hicke et al., 1997;Prescianotto-Baschong and Riezman, 1998;Lewis et al., 2000). The carboxypeptidase Y pathway and endocytosis converge at the endosome where another route, the multivesicular body pathway, delivers both resident enzymes and substrates to the vac...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.