Grind-hardening was done on 65Mn steel with a conventional surface grinder and a corundum-grinding wheel. Research was conducted to probe into microstructures and properties of the hardened layer under varied depth of cut and cooling conditions. Results show that the hardened layer does not change noticeably in their martensitic structures and micro-hardness, which is ranged between 810-870HV. When the depth of cut increases or the dry grinding technique is adopted, the hardened layer becomes thicker accordingly. Under the condition of dry grinding with the depth of cut 1.0mm, the hardened layer depth reaches 2.0mm. It can find applications in grinding and metal surface modification field.
Grind-hardening was done on Steel AISI 1066 with a conventional surface grinder and a corundum grinding wheel, and research was conducted to probe into structures and properties of the hardened layer under varied depth of cut and cooling conditions. Results show that the hardened layer do not change noticeably in their martensitic structures and micro-hardness, which is ranged between 810870HV; But when the depth of cut increased or the dry grinding technique is adopted, the concentration of martensites and carbonides becomes lower, while the amount of residual austenites increases, and the completely hardened zone gets thicker. This conclusion serves as an experimental basis for the active control of properties of the grind-hardened layer of Steel AISI 1066.
In this study, an integrated methodology combining computational modal analysis, experimental modal analysis, and computational dynamic analysis was developed to investigate unbalancing dynamic responses of high speed machining tool systems. A linear-elasticity formulation based on the finite element method (FEM) was employed to compute the natural frequencies and obtain the corresponding modal shapes. Experimental modal analysis was then performed to verify the natural frequencies. After the validation, the FEM model was further modified to predict the dynamic responses, with an HSK (a Germany abbreviation of Hohl Schaft Kegel) tool system as a model system. The results indicated that, by validating the computed natural frequencies with experimental ones, an effective simulation model can be established for predicting complex dynamic response of high speed machining tool systems.
The stiffness of the HSK tool system directly influences the efficiency and the quality of high-speed machining. Based on the mechanics of materials and finite element method, theoretical analysis and digital simulation are done with the stiffness of the HSK tool system. An equation to calculate the deformation angle of the HSK shank is proposed. The basic change law of the stiffness of the HSK tool system is shown and it offers theoretical base for properly applying the HSK tool
system to maximize benefit. It is important in theory and application area to develop new-style tool system with our own intellectual property.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.