BackgroundSaturated fatty acids can be detrimental to human health and have received considerable attention in recent years. Several studies using taurine breeds showed the existence of genetic variability and thus the possibility of genetic improvement of the fatty acid profile in beef. This study identified the regions of the genome associated with saturated, mono- and polyunsaturated fatty acids, and n-6 to n-3 ratios in the Longissimus thoracis of Nellore finished in feedlot, using the single-step method.ResultsThe results showed that 115 windows explain more than 1 % of the additive genetic variance for the 22 studied fatty acids. Thirty-one genomic regions that explain more than 1 % of the additive genetic variance were observed for total saturated fatty acids, C12:0, C14:0, C16:0 and C18:0. Nineteen genomic regions, distributed in sixteen different chromosomes accounted for more than 1 % of the additive genetic variance for the monounsaturated fatty acids, such as the sum of monounsaturated fatty acids, C14:1 cis-9, C18:1 trans-11, C18:1 cis-9, and C18:1 trans-9. Forty genomic regions explained more than 1 % of the additive variance for the polyunsaturated fatty acids group, which are related to the total polyunsaturated fatty acids, C20:4 n-6, C18:2 cis-9 cis12 n-6, C18:3 n-3, C18:3 n-6, C22:6 n-3 and C20:3 n-6 cis-8 cis-11 cis-14. Twenty-one genomic regions accounted for more than 1 % of the genetic variance for the group of omega-3, omega-6 and the n-6:n-3 ratio.ConclusionsThe identification of such regions and the respective candidate genes, such as ELOVL5, ESSRG, PCYT1A and genes of the ABC group (ABC5, ABC6 and ABC10), should contribute to form a genetic basis of the fatty acid profile of Nellore (Bos indicus) beef, contributing to better selection of the traits associated with improving human health.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2511-y) contains supplementary material, which is available to authorized users.
The objective of this study was to identify genomic regions that are associated with meat quality traits in the Nellore breed. Nellore steers were finished in feedlots and slaughtered at a commercial slaughterhouse. This analysis included 1,822 phenotypic records of tenderness and 1,873 marbling records. After quality control, 1,630 animals genotyped for tenderness, 1,633 animals genotyped for marbling, and 369,722 SNPs remained. The results are reported as the proportion of variance explained by windows of 150 adjacent SNPs. Only windows with largest effects were considered. The genomic regions were located on chromosomes 5, 15, 16 and 25 for marbling and on chromosomes 5, 7, 10, 14 and 21 for tenderness. These windows explained 3,89% and 3,80% of the additive genetic variance for marbling and tenderness, respectively. The genes associated with the traits are related to growth, muscle development and lipid metabolism. The study of these genes in Nellore cattle is the first step in the identification of causal mutations that will contribute to the genetic evaluation of the breed.
The objective of this study was to perform a genome-wide association study (GWAS) to detect chromosome regions associated with indicator traits of sexual precocity in Nellore cattle. Data from Nellore animals belonging to farms which participate in the DeltaGen® and Paint® animal breeding programs, were used. The traits used in this study were the occurrence of early pregnancy (EP) and scrotal circumference (SC). Data from 72,675 females and 83,911 males with phenotypes were used; of these, 1,770 females and 1,680 males were genotyped. The SNP effects were estimated with a single-step procedure (WssGBLUP) and the observed phenotypes were used as dependent variables. All animals with available genotypes and phenotypes, in addition to those with only phenotypic information, were used. A single-trait animal model was applied to predict breeding values and the solutions of SNP effects were obtained from these breeding values. The results of GWAS are reported as the proportion of variance explained by windows with 150 adjacent SNPs. The 10 windows that explained the highest proportion of variance were identified. The results of this study indicate the polygenic nature of EP and SC, demonstrating that the indicator traits of sexual precocity studied here are probably controlled by many genes, including some of moderate effect. The 10 windows with large effects obtained for EP are located on chromosomes 5, 6, 7, 14, 18, 21 and 27, and together explained 7.91% of the total genetic variance. For SC, these windows are located on chromosomes 4, 8, 11, 13, 14, 19, 22 and 23, explaining 6.78% of total variance. GWAS permitted to identify chromosome regions associated with EP and SC. The identification of these regions contributes to a better understanding and evaluation of these traits, and permits to indicate candidate genes for future investigation of causal mutations.
The purpose of this study was to identify genomic regions associated with carcass traits in an experimental Nelore cattle population. The studied data set contained 2,306 ultrasound records for longissimus muscle area (LMA), 1,832 for backfat thickness (BF), and 1,830 for rump fat thickness (RF). A high-density SNP panel (BovineHD BeadChip assay 700k, Illumina Inc., San Diego, CA) was used for genotyping. After genomic data quality control, 437,197 SNPs from 761 animals were available, of which 721 had phenotypes for LMA, 669 for BF, and 718 for RF. The SNP solutions were estimated using a single-step genomic BLUP approach (ssGWAS), which calculated the variance for windows of 50 consecutive SNPs and the regions that accounted for more than 0.5% of the additive genetic variance were used to search for candidate genes. The results indicated that 12, 18, and 15 different windows were associated to LMA, BF, and RF, respectively. Confirming the polygenic nature of the studied traits, 43, 65, and 53 genes were found in those associated windows, respectively for LMA, BF, and RF. Among the candidate genes, some of them, which already had their functions associated with the expression of energy metabolism, were found associated with fat deposition in this study. In addition, ALKBH3 and HSD17B12 genes, which are related in fibroblast death and metabolism of steroids, were found associated with LMA. The results presented here should help to better understand the genetic and physiologic mechanism regulating the muscle tissue deposition and subcutaneous fat cover expression of Zebu animals. The identification of candidate genes should contribute for Zebu breeding programs in order to consider carcass traits as selection criteria in their genetic evaluation.
ABSTRACT. The aim of this study was to identify single-nucleotide polymorphisms (SNPs) in buffaloes associated with milk yield and content, in addition to somatic cell scores based on the cross-species transferability of SNPs from cattle to buffalo. A total of 15,745 SNPs were analyzed, of which 1562 showed 1% significance and 4742 with 5% significance, which were associated for all traits studied. After application of Bonferroni's correction for multiple tests of the traits analyzed, we found 2 significant SNPs placed on cattle chromosomes BTA15 and BTA20, which are homologous to buffalo chromosomes BBU16 and BBU19, respectively. In this genome association study, we found several significant SNPs affecting buffalo milk production and quality. Furthermore, the use of the high-density bovine BeadChip was suitable for genomic analysis in buffaloes. Although extensive chromosome arm homology was described between cattle and buffalo, the exact chromosomal position of SNP GWAS for milk production traits in buffalo markers associated with these economically important traits in buffalo can be determined only through buffalo genome sequencing.
BackgroundAn important goal of Zebu breeding programs is to improve reproductive performance. A major problem faced with the genetic improvement of reproductive traits is that recording the time for an animal to reach sexual maturity is costly. Another issue is that accurate estimates of breeding values are obtained only a long time after the young bulls have gone through selection. An alternative to overcome these problems is to use traits that are indicators of the reproductive efficiency of the herd and are easier to measure, such as age at first calving. Another problem is that heifers that have conceived once may fail to conceive in the next breeding season, which increases production costs. Thus, increasing heifer’s rebreeding rates should improve the economic efficiency of the herd. Response to selection for these traits tends to be slow, since they have a low heritability and phenotypic information is provided only later in the life of the animal. Genome-wide association studies (GWAS) are useful to investigate the genetic mechanisms that underlie these traits by identifying the genes and metabolic pathways involved.ResultsData from 1853 females belonging to the Agricultural Jacarezinho LTDA were used. Genotyping was performed using the BovineHD BeadChip (777 962 single nucleotide polymorphisms (SNPs)) according to the protocol of Illumina - Infinium Assay II ® Multi-Sample HiScan with the unit SQ ™ System. After quality control, 305 348 SNPs were used for GWAS. Forty-two and 19 SNPs had a Bayes factor greater than 150 for heifer rebreeding and age at first calving, respectively. All significant SNPs for age at first calving were significant for heifer rebreeding. These 42 SNPs were next or within 35 genes that were distributed over 18 chromosomes and comprised 27 protein-encoding genes, six pseudogenes and two miscellaneous noncoding RNAs.ConclusionsThe use of Bayes factor to determine the significance of SNPs allowed us to identify two sets of 42 and 19 significant SNPs for heifer rebreeding and age at first calving, respectively, which explain 11.35 % and 6.42 % of their phenotypic variance, respectively. These SNPs provide relevant information to help elucidate which genes affect these traits.
BackgroundPrevious genome-wide association analyses identified QTL regions in the X chromosome for percentage of normal sperm and scrotal circumference in Brahman and Tropical Composite cattle. These traits are important to be studied because they are indicators of male fertility and are correlated with female sexual precocity and reproductive longevity. The aim was to investigate candidate genes in these regions and to identify putative causative mutations that influence these traits. In addition, we tested the identified mutations for female fertility and growth traits.ResultsUsing a combination of bioinformatics and molecular assay technology, twelve non-synonymous SNPs in eleven genes were genotyped in a cattle population. Three and nine SNPs explained more than 1% of the additive genetic variance for percentage of normal sperm and scrotal circumference, respectively. The SNPs that had a major influence in percentage of normal sperm were mapped to LOC100138021 and TAF7L genes; and in TEX11 and AR genes for scrotal circumference. One SNP in TEX11 was explained ~13% of the additive genetic variance for scrotal circumference at 12 months. The tested SNP were also associated with weight measurements, but not with female fertility traits.ConclusionsThe strong association of SNPs located in X chromosome genes with male fertility traits validates the QTL. The implicated genes became good candidates to be used for genetic evaluation, without detrimentally influencing female fertility traits.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1595-0) contains supplementary material, which is available to authorized users.
Reproductive traits are economically important for beef cattle production; however, these traits are still a bottleneck in indicine cattle since these animals typically reach puberty at older ages when compared to taurine breeds. In addition, reproductive traits are complex phenotypes, i.e., they are controlled by both the environment and many small-effect genes involved in different pathways. In this study, we conducted genome-wide association study (GWAS) and functional analyses to identify important genes and pathways associated with heifer rebreeding (HR) and with the number of calvings at 53 months of age (NC53) in Nellore cows. A total of 142,878 and 244,311 phenotypes for HR and NC53, respectively, and 2,925 animals genotyped with the Illumina Bovine HD panel (Illumina®, San Diego, CA, USA) were used in GWAS applying the weighted single-step GBLUP (WssGBLUP) method. Several genes associated with reproductive events were detected in the 20 most important 1Mb windows for both traits. Significant pathways for HR and NC53 were associated with lipid metabolism and immune processes, respectively. MHC class II genes, detected on chromosome 23 (window 25-26Mb) for NC53, were significantly associated with pregnancy success of Nellore cows. These genes have been proved previously to be associated with reproductive traits such as mate choice in other breeds and species. Our results suggest that genes associated with the reproductive traits HR and NC53 may be involved in embryo development in mammalian species. Furthermore, some genes associated with mate choice may affect pregnancy success in Nellore cattle.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers