BACKGROUND:Insulin-like growth factor 1 (IGF-1) 7 is a key mediator of growth hormone (GH) action and a well-characterized biomarker of GH abuse. Current immunoassays for IGF-1 suffer from poor concordance between platforms, which makes comparison of results between laboratories difficult. Although previous work has demonstrated good interlaboratory imprecision of LC-MS/MS methods when plasma is supplemented with purified proteins, the interlaboratory imprecision of an endogenous protein in the nanogram-per-milliliter concentration range has not been reported.
Methods to visualize, track and modify proteins in living cells are central for understanding the spatial and temporal underpinnings of life inside cells. Although fluorescent proteins have proven to be extremely useful for in vivo studies of protein function, their utility is inherently limited because their spectral and structural characteristics are interdependent. These limitations have spurred the creation of alternative approaches for the chemical labeling of proteins. We report in this work the use of fluorescence resonance emission transfer (FRET)-quenched DnaE split-inteins for the site-specific labeling and concomitant fluorescence activation of proteins in living cells. We have successfully employed this approach for the site-specific in-cell labeling of the DNA binding domain (DBD) of the transcription factor YY1 using several human cell lines. Moreover, we have shown that this approach can be also used for modifying proteins in order to control their cellular localization and potentially alter their biological activity.
To understand the relationship between DNA damage potential and biochemical activities, we synthesized nine different Fe(III)-salen derivatives with varying substituents, and analyzed their in vitro DNA cleavage properties and biochemical effects on cultured human cells. Our results demonstrated that Fe(III)-salen complexes affect cell viability, induce nuclear fragmentation, and activate caspases and apoptosis in cultured human cells. The nature and the position of the substituents in the Fe(III)-salen complexes play critical roles in determining their apoptotic efficiencies. Most importantly, our results demonstrated that the in vitro DNA cleavage activities of Fe(III)-salen complexes are not essential for their apoptotic activities in human cells. Instead, the lesser their DNA cleavage activity the greater is their apoptotic efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.