In this paper we introduce SNF, a framework that synthesizes (S) network function (NF) service chains by eliminating redundant I/O and repeated elements, while consolidating stateful cross layer packet operations across the chain. SNF uses graph composition and set theory to determine traffic classes handled by a service chain composed of multiple elements. It then synthesizes each traffic class using a minimal set of new elements that apply single-read-single-write and early-discard operations. Our SNF prototype takes a baseline state of the art network functions virtualization (NFV) framework to the level of performance required for practical NFV service deployments. Software-based SNF realizes long (up to 10 NFs) and stateful service chains that achieve line-rate 40 Gbps throughput (up to 8.5x greater than the baseline NFV framework). Hardware-assisted SNF, using a commodity OpenFlow switch, shows that our approach scales at 40 Gbps for Internet Service Provider-level NFV deployments. Subjects Computer Networks and Communications
Recent approaches to network functions virtualization (NFV) have shown that commodity network stacks and drivers struggle to keep up with increasing hardware speed. Despite this, popular cloud networking services still rely on commodity operating systems (OSs) and device drivers. Taking into account the hardware underlying of commodity servers, we built an NFV profiler that tracks the movement of packets across the system’s memory hierarchy by collecting key hardware and OS-level performance counters. Leveraging the profiler’s data, our Service Chain Coordinator’s (SCC) runtime accelerates user-space NFV service chains, based on commodity drivers. To do so, SCC combines multiplexing of system calls with scheduling strategies, taking time, priority, and processing load into account. By granting longer time quanta to chained network functions (NFs), combined with I/O multiplexing, SCC reduces unnecessary scheduling and I/O overheads, resulting in three-fold latency reduction due to cache and main memory utilization improvements. More importantly, SCC reduces the latency variance of NFV service chains by up to 40x compared to standard FastClick chains by making the average case for an NFV chain to perform as well as the best case. These improvements are possible because of our profiler’s accuracy. QC 20170316
Advances in the fields of networking, broadband communications and demand for high-fidelity low-latency last-mile communications have rendered as-efficient-as-possible relaying methods more necessary than ever. This paper investigates the possibility of the utilization of cellular-enabled drones as aerial base stations in next-generation cellular networks. Flying ad hoc networks (FANETs) acting as clusters of deployable relays for the on-demand extension of broadband connectivity constitute a promising scenario in the domain of next-generation high-availability communications. Matters of mobility, handover efficiency, energy availability, optimal positioning and node localization as well as respective multi-objective optimizations are discussed in detail, with their core ideas defining the structure of the work at hand. This paper examines improvements to the existing cellular network core to support novel use-cases and lower the operation costs of diverse ad hoc deployments.
12In this paper we introduce SNF, a framework that synthesizes (S) network function (NF) service chains by eliminating redundant I/O and repeated elements, while consolidating stateful cross layer packet operations across the chain. SNF uses graph composition and set theory to determine traffic classes handled by a service chain composed of multiple elements. It then synthesizes each traffic class using a minimal set of new elements that apply single-read-single-write and early-discard operations. Our SNF prototype takes a baseline state of the art network functions virtualization (NFV) framework to the level of performance required for practical NFV service deployments. Software-based SNF realizes long (up to 10 NFs) and stateful service chains that achieve line-rate 40 Gbps throughput (up to 8.5x greater than the baseline NFV framework). Hardware-assisted SNF, using a commodity OpenFlow switch, shows that our approach scales at 40 Gbps for Internet Service Provider-level NFV deployments.
While the current literature typically focuses on load-balancing among multiple servers, in this paper, we demonstrate the importance of load-balancing within a single machine (potentially with hundreds of CPU cores). In this context, we propose a new load-balancing technique (RSS++) that dynamically modifies the receive side scaling (RSS) indirection table to spread the load across the CPU cores in a more optimal way. RSS++ incurs up to 14x lower 95 th percentile tail latency and orders of magnitude fewer packet drops compared to RSS under high CPU utilization. RSS++ allows higher CPU utilization and dynamic scaling of the number of allocated CPU cores to accommodate the input load while avoiding the typical 25% over-provisioning. RSS++ has been implemented for both (i) DPDK and (ii) the Linux kernel. Additionally, we implement a new state migration technique which facilitates sharding and reduces contention between CPU cores accessing per-flow data. RSS++ keeps the flowstate by groups that can be migrated at once, leading to a 20% higher efficiency than a state of the art shared flow table.
Network interface cards (NICs) are fundamental components of modern high-speed networked systems, supporting multi-100 Gbps speeds and increasing programmability. Offloading computation from a server's CPU to a NIC frees a substantial amount of the server's CPU resources, making NICs key to offer competitive cloud services. Therefore, understanding the performance benefits and limitations of offloading a networking application to a NIC is of paramount importance. In this paper, we measure the performance of four different NICs from one of the largest NIC vendors worldwide, supporting 100 Gbps and 200 Gbps. We show that while today's NICs can easily support multihundred-gigabit throughputs, performing frequent update operations of a NIC's packet classifier -as network address translators (NATs) and load balancers would do for each incoming connection -results in a dramatic throughput reduction of up to 70 Gbps or complete denial of service. Our conclusion is that all tested NICs cannot support high-speed networking applications that require keeping track of a large number of frequently arriving incoming connections. Furthermore, we show a variety of counter-intuitive performance artefacts including the performance impact of using multiple tables to classify flows of packets.
12In this paper we introduce SNF, a framework that synthesizes (S) network function (NF) service chains by eliminating redundant I/O and repeated elements, while consolidating stateful cross layer packet operations across the chain. SNF uses graph composition and set theory to determine traffic classes handled by a service chain composed of multiple elements. It then synthesizes each traffic class using a minimal set of new elements that apply single-read-single-write and early-discard operations. Our SNF prototype takes a baseline state of the art network functions virtualization (NFV) framework to the level of performance required for practical NFV service deployments. Software-based SNF realizes long (up to 10 NFs) and stateful service chains that achieve line-rate 40 Gbps throughput (up to 8.5x greater than the baseline NFV framework). Hardware-assisted SNF, using a commodity OpenFlow switch, shows that our approach scales at 40 Gbps for Internet Service Provider-level NFV deployments.
12In this paper we introduce SNF, a framework that synthesizes (S) network function (NF) service chains by eliminating redundant I/O and repeated elements, while consolidating stateful cross layer packet operations across the chain. SNF uses graph composition and set theory to determine traffic classes handled by a service chain composed of multiple elements. It then synthesizes each traffic class using a minimal set of new elements that apply single-read-single-write and early-discard operations. Our SNF prototype takes a baseline state of the art network functions virtualization (NFV) framework to the level of performance required for practical NFV service deployments. Software-based SNF realizes long (up to 10 NFs) and stateful service chains that achieve line-rate 40 Gbps throughput (up to 8.5x greater than the baseline NFV framework). Hardware-assisted SNF, using a commodity OpenFlow switch, shows that our approach scales at 40 Gbps for Internet Service Provider-level NFV deployments.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers