We present the first large-scale radiative transfer simulations of cosmic reionization, in a simulation volume of (100 h −1 Mpc) 3 . This is more than a two orders of magnitude improvement over previous simulations. We achieve this by combining the results from extremely large, cosmological, N-body simulations with a new, fast and efficient code for 3D radiative transfer, C 2 -RAY, which we have recently developed. These simulations allow us to do the first numerical studies of the large-scale structure of reionization which at the same time, and crucially, properly take account of the dwarf galaxy ionizing sources which are primarily responsible for reionization. In our realization, reionization starts around z ∼ 21, and final overlap occurs by z ∼ 11. The resulting electron-scattering optical depth is in good agreement with the first-year Wilkinson Microwave Anisotropy Probe (WMAP) polarization data. We show that reionization clearly proceeded in an inside-out fashion, with the high-density regions being ionized earlier, on average, than the voids. Ionization histories of smaller-size (5-10 comoving Mpc) subregions exabit a large scatter about the mean and do not describe the global reionization history well. This is true even when these subregions are at the mean density of the universe, which shows that small-box simulations of reionization have little predictive power for the evolution of the mean ionized fraction. The minimum reliable volume size for such predictions is ∼30 Mpc. We derive the power spectra of the neutral, ionized and total gas density fields and show that there is a significant boost of the density fluctuations in both the neutral and the ionized components relative to the total at arcmin and larger scales. We find two populations of H II regions according to their size, numerous, mid-sized (∼10-Mpc) regions and a few, rare, very large regions tens of Mpc in size. Thus, local overlap on fairly large scales of tens of Mpc is reached by z ∼ 13, when our volume is only about 50 per cent ionized, and well before the global overlap. We derive the statistical distributions of the ionized fraction and ionized gas density at various scales and for the first time show that both distributions are clearly non-Gaussian. All these quantities are critical for predicting and interpreting the observational signals from reionization from a variety of observations like 21-cm emission, Lyα emitter statistics, Gunn-Peterson optical depth and small-scale cosmic microwave background secondary anisotropies due to patchy reionization.
We perform numerical simulations of a disc-planet system using various grid-based and smoothed particle hydrodynamics (SPH) codes. The tests are run for a simple setup where Jupiter and Neptune mass planets on a circular orbit open a gap in a protoplanetary disc during a few hundred orbital periods. We compare the surface density contours, potential vorticity and smoothed radial profiles at several times. The disc mass and gravitational torque time evolution are analyzed with high temporal resolution. There is overall consistency between the codes. The density profiles agree within about 5% for the Eulerian simulations while the SPH results predict the correct shape of the gap although have less resolution in the low density regions and weaker planetary wakes. The disc masses after 200 orbital periods agree within 10%. The spread is larger in the tidal torques acting on the planet which agree within a factor 2 at the end of the simulation. In the Neptune case the dispersion in the torques is greater than for Jupiter, possibly owing to the contribution from the not completely cleared region close to the planet.Comment: 32 pages, accepted for publication in MNRA
Radiative transfer (RT) simulations are now at the forefront of numerical astrophysics. They are becoming crucial for an increasing number of astrophysical and cosmological problems; at the same time their computational cost has come within reach of currently available computational power. Further progress is retarded by the considerable number of different algorithms (including various flavours of ray tracing and moment schemes) developed, which makes the selection of the most suitable technique for a given problem a non‐trivial task. Assessing the validity ranges, accuracy and performances of these schemes is the main aim of this paper, for which we have compared 11 independent RT codes on five test problems: (0) basic physics; (1) isothermal H ii region expansion; (2) H ii region expansion with evolving temperature; (3) I‐front trapping and shadowing by a dense clump and (4) multiple sources in a cosmological density field. The outputs of these tests have been compared and differences analysed. The agreement between the various codes is satisfactory although not perfect. The main source of discrepancy appears to reside in the multifrequency treatment approach, resulting in different thicknesses of the ionized‐neutral transition regions and the temperature structure. The present results and tests represent the most complete benchmark available for the development of new codes and improvement of existing ones. To further this aim all test inputs and outputs are made publicly available in digital form.
We present the first limits on the Epoch of Reionization 21 cm H I power spectra, in the redshift range z=7.9-10.6, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total, 13.0 hr of data were used from observations centered on the North Celestial Pole. After subtraction of the sky model and the noise bias, we detect a non-zero 56 13 mK D < ( ) at k=0.053 h cMpc −1 in the range z=9.6-10.6. The excess variance decreases when optimizing the smoothness of the direction-and frequency-dependent gain calibration, and with increasing the completeness of the sky model. It is likely caused by (i) residual side-lobe noise on calibration baselines, (ii) leverage due to nonlinear effects, (iii) noise and ionosphere-induced gain errors, or a combination thereof. Further analyses of the excess variance will be discussed in forthcoming publications.
Recently, we have presented the first large-scale radiative transfer simulations of reionization. Here we present new simulations which extend the source halo mass range downward to 10^8M_solar, to capture the full range of halo masses thought to be primarily responsible for reionization by their star formation following atomic hydrogen radiative cooling and gravitational collapse. Haloes below about 10^9M_solar, however, are subject to Jeans-mass filtering in the ionized regions, which suppresses their baryonic content and their ability to release ionizing radiation. By including these smaller-mass haloes but accounting for their suppression, too, we find that reionization is ``self-regulating,'' as follows. As the mean ionized fraction rises, so does the fraction of the volume within which suppression occurs. Hence, the degree of suppression is related to the mean ionized fraction. Since low-mass haloes with high emissivity achieve a given mean ionized fraction earlier than do those with low efficiency, Jeans-mass filtering compensates for the difference in the emissivity of the suppressible haloes in these two cases. As a result, in the presence of lower-mass source haloes, reionization begins earlier, but the later stages of reionization and the time of overlap are dictated by the efficiency of the higher-mass haloes, independent of the efficiency of the suppressible, lower-mass haloes. Reionization histories consistent with current observational constraints are shown to be achievable with standard stellar sources in haloes above 10^8M_solar. Neither minihalos nor exotic sources are required, and the phenomenon of ``double reionization'' previously suggested does not occur. (abridged)Comment: 16 pages, 10 figures, most in color. MNRAS, in print. Replaced to match the accepted version. High-quality images and movies can be found at http://www.cita.utoronto.ca/~iliev/dokuwiki/doku.php?id=reionization_sim
The Square Kilometre Array (SKA) will have a low frequency component (SKA-low) which has as one of its main science goals the study of the redshifted 21cm line from the earliest phases of star and galaxy formation in the Universe. This 21cm signal provides a new and unique window both on the time of the formation of the first stars and accreting black holes and the subsequent period of substantial ionization of the intergalactic medium. The signal will teach us fundamental new things about the earliest phases of structure formation, cosmology and even has the potential to lead to the discovery of new physical phenomena. Here we present a white paper with an Executive SummaryThe Square Kilometre Array (SKA) will have a low frequency component (AA-low/SKA-low 1 ) which has as one of its main science goals the study of the redshifted 21cm line from the earliest phases of star and galaxy formation in the Universe (see SKA Memo 125). It is during this phase that the first building blocks of the galaxies that we see around us today, including our own Milky Way, were formed. It is a crucial period for understanding the history of the Universe and one for which we have currently very little observational data.We divide the period into two different phases based on the physical processes which affect the Intergalactic Medium. The first period, which we call the Cosmic Dawn, saw the formation of the first stars and accreting black holes, which changed the quantum state of the still neutral Intergalactic Medium. The second period, known as the Epoch of Reionization, is the one during which large areas between the galaxies were photo-ionized by the radiation produced in galaxies and which ended when the Intergalactic Medium had become completely ionized.Observations of the redshifted 21-cm line with SKA will provide a new and unique window on the entire period of Cosmic Dawn and Reionization. The signal is sensitive to the emergence of the first stellar populations, radiation from growing massive black holes and the formation of larger groups of galaxies and bright quasars. At the same time it maps the distribution of most of the baryonic matter in the Universe. The study of the redshifted 21cm line will teach us fundamental new things about the earliest phases of structure formation and cosmology. It even has the potential to lead to the discovery of new physical phenomena. Here we present an overview of the science questions that SKA-low can address, how we plan to tackle these questions and what this implies for the basic design of the telescope.The redshifted 21cm signal will be analyzed with different techniques, which each come with their own requirements for the SKA: (i) Tomography, (ii) power-spectra and higher-order statistics, (iii) hydrogen absorption, (iv) global/total-intensity signal. Whereas all precursors/pathfinders aim to study the signal statistically through its power spectrum, SKA will be able to image the neutral hydrogen distribution directly and its focus will therefore be more on tomograph...
Aims. We investigate the effect of including a proper energy balance on the interaction of a low-mass planet with a protoplanetary disk. Methods. We use a three-dimensional version of the RODEO method to perform hydrodynamical simulations including the energy equation. Radiation is included in the flux-limited diffusion approach.Results. The sign of the torque is sensitive to the ability of the disk to radiate away the energy generated in the immediate surroundings of the planet. In the case of high opacity, corresponding to the dense inner regions of protoplanetary disks, migration is directed outward, instead of the usual inward migration that was found in locally isothermal disks. For low values of the opacity we recover inward migration and show that torques originating in the coorbital region are responsible for the change in migration direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.