Given any multiset F of points in the Euclidean plane and a set R of robots such that |R| = |F|, the Arbitrary Pattern Formation (APF) problem asks for a distributed algorithm that moves robots so as to reach a configuration similar to F. Similarity means that robots must be disposed as F regardless of translations, rotations, reflections, uniform scalings. Initially, each robot occupies a distinct position. When active, a robot operates in standard Look-ComputeMove cycles. Robots are asynchronous, oblivious, anonymous, silent and execute the same distributed algorithm. So far, the problem has been mainly addressed by assuming chirality, that is robots share a common left-right orientation. We are interested in removing such a restriction.While working on the subject, we faced several issues that required close attention. We deeply investigated how such difficulties were overcome in the literature, revealing that crucial arguments for the correctness proof of the existing algorithms have been neglected. The systematic lack of rigorous arguments with respect to necessary conditions required for providing correctness proofs deeply affects the The work has been supported in part by the European project "Geospatial based Environment for Optimisation Systems Addressing Fire Emergencies" (GEO-SAFE), contract no. H2020-691161, and by the Italian National Group for Scientific Computation (GNCS-INdAM). Here we design a new deterministic distributed algorithm that fully characterizes APF showing its equivalence with the well-known Leader Election problem in the asynchronous model without chirality. Our approach is characterized by the use of logical predicates in order to formally describe our algorithm as well as its correctness. In addition to the relevance of our achievements, our techniques might help in revising previous results.
Abstract. The paper deals with a recent model of robot-based computing which makes use of identical, memoryless mobile robots placed on nodes of anonymous graphs. The robots operate in Look-Compute-Move cycles; in one cycle, a robot takes a snapshot of the current configuration (Look), takes a decision whether to stay idle or to move to one of its adjacent nodes (Compute), and in the latter case makes an instantaneous move to this neighbor (Move). Cycles are performed asynchronously for each robot. In particular, we consider the case of only six robots placed on the nodes of an anonymous ring in such a way they constitute a symmetric placement with respect to one single axis of symmetry, and we ask whether there exists a strategy that allows the robots to gather at one single node. This is in fact the first case left open after a series of papers [3,[6][7][8] dealing with the gathering of oblivious robots on anonymous rings. As long as the gathering is feasible, we provide a new distributed approach that guarantees a positive answer to the posed question. Despite the very special case considered, the provided strategy turns out to be very interesting as it neither completely falls into symmetry-breaking nor into symmetry-preserving techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.