The costs for solar photovoltaics, wind, and battery storage have dropped markedly since 2010, however, many recent studies and reports around the world have not adequately captured such dramatic decrease. Those costs are projected to decline further in the near future, bringing new prospects for the widespread penetration of renewables and extensive power-sector decarbonization that previous policy discussions did not fully consider. Here we show if cost trends for renewables continue, 62% of China's electricity could come from nonfossil sources by 2030 at a cost that is 11% lower than achieved through a business-as-usual approach. Further, China's power sector could cut half of its 2015 carbon emissions at a cost about 6% lower compared to business-as-usual conditions.
Abstract:With the development of the smart grid in China, new opportunities for responsive industrial loads to participate in the provision of ancillary services (AS) will become accessible. This paper summarizes AS in China and analyzes the necessary characteristics and advantages of industrial users to provide AS according to their response mechanism. Cement manufacturing and aluminum smelter processes are selected as two representatives of responsive industrial loads. An agent-based model that includes generation, industrial user, and grid agents is proposed. Using two case studies, we analyze the integrated power management of conventional units and industrial loads in day-ahead and real-time AS scheduling based on real device parameters, price mechanisms and production data. The simulation results indicate that the participation of responsive industrial loads in the provision of AS, in China, can improve the coal consumption rate and the system-wide load factor as well as reduce the total system cost for the provision of AS significantly.
Increasing penetration of intermittent renewable electricity into the grid, coupled with development of new communication and control strategies, is creating challenges and opportunities for demand response (DR) to balance the grid. This paper presents a model characterization of a controllable buildings Variable Air Volume HVAC (VAV HVAC) system capable of implementing control strategies that provide flexibility to the grid. A Model Predictive Controller (MPC) capable of reliably varying the modeled power by ±20%, or up to ±2 GW on a national scale, every five minutes without compromising occupants comfort was built. A climate analysis was performed in order to assess the availability of controllable resources in sixteen cities. It is found that this control strategy could be implemented up to 99% of the time in the hottest regions, but as low as 10% of the time in the coldest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.