We report the production of an important human therapeutic antibody in plant cell suspension cultures and the functional analysis of that antibody, including a comparison with the same antibody produced in CHO cells. We established transgenic tobacco BY2 suspension cell cultures expressing the human monoclonal antibody 2F5, which shows broadly neutralizing activity against HIV-1. The antibody was directed to the endoplasmic reticulum of the plant cells and was isolated by cell disruption, followed by protein A chromatography. The plant-derived antibody was shown to be largely intact by SDS-PAGE and immunoblot. Antigen binding activity was investigated by electrophoretic mobility shift assay and quantitatively determined by ELISA and Biacore biosensor technology. Ligand binding properties were analyzed using the ectodomain of human Fc gammaRI for kinetic analysis. The plant-derived antibody showed similar kinetic properties and 89% of the binding capacity of its CHO-derived counterpart, but was only 33% as efficient in HIV-1 neutralization assays. Our results show that plant suspension cultures can be used to produce human antibodies efficiently and that the analysis methods used in this study, including biosensor technology, provide useful functional data about antibody performance. This highlights important issues raised by the use of plant systems to produce human biologics.
This report highlights the potential of measurement, monitoring, modeling and control (M(3) C) methodologies in animal and human cell culture technology. In particular, state-of-the-art of M(3) C technologies and their industrial relevance of existing technology are addressed. It is a summary of an expert panel discussion between biotechnologists and biochemical engineers with both academic and industrial backgrounds. The latest ascents in M(3) C are discussed from a cell culture perspective for industrial process development and production needs. The report concludes with a set of recommendations for targeting M(3) C research toward the industrial interests. These include issues of importance for biotherapeutics production, miniaturization of measurement techniques and modeling methods.
BackgroundThe Chinese hamster ovary (CHO) expression system is the leading production platform for manufacturing biopharmaceuticals for the treatment of numerous human diseases. Efforts to optimize the production process also include the genetic construct encoding the therapeutic gene. Here we report about the successful identification of an endogenous highly active gene promoter obtained from CHO cells which shows conditionally inducible gene expression at reduced temperature.ResultsBased on CHO microarray expression data abundantly transcribed genes were selected as potential promoter candidates. The S100a6 (calcyclin) and its flanking regions were identified from a genomic CHO-K1 lambda-phage library. Computational analyses showed a predicted TSS, a TATA-box and several TFBSs within the 1.5 kb region upstream the ATG start signal. Various constructs were investigated for promoter activity at 37°C and 33°C in transient luciferase reporter gene assays. Most constructs showed expression levels even higher than the SV40 control and on average a more than two-fold increase at lower temperature. We identified the core promoter sequence (222 bp) comprising two SP1 sites and could show a further increase in activity by duplication of this minimal sequence.ConclusionsThis novel CHO promoter permits conditionally high-level gene expression. Upon a shift to 33°C, a two to three-fold increase of basal productivity (already higher than SV40 promoter) is achieved. This property is of particular advantage for a process with reduced expression during initial cell growth followed by the production phase at low temperature with a boost in expression. Additionally, production of toxic proteins becomes feasible, since cell metabolism and gene expression do not directly interfere. The CHO S100a6 promoter can be characterized as cold-shock responsive with the potential for improving process performance of mammalian expression systems.
One of the major problems in process performance of mammalian cell cultures is the production of lactic acid. Cell specific glucose uptake rates usually correlate to glucose concentration and approximately 80% of the metabolised glucose is converted into lactic acid. As the mitochondrial membrane potential was shown to correlate to cell specific glucose uptake rates, we used Rhodamine 123, a lipophilic cationic dye for cell sorting to improve the energy metabolism of existing production cell lines. Two recombinant CHO cell lines with known differences in lactic acid production rate were used to evaluate Rhodamine 123 staining as a descriptor for glucose uptake rates and to determine whether it is possible to isolate subclones with altered metabolic properties. Such subclones would exhibit an improved process performance, and in addition could be used as models for genomic and metabolic studies. From the cell line with high lactate production, a subclone sorted for reduced mitochondrial membrane potential was found to have a lower specific lactate formation rate compared to the parental cell line in batch cultures. In addition, the glucose consumption rate was also reduced, while both the growth rate and the final cell concentration were increased. A subclone sorted for high mitochondrial membrane potential, on the other hand, had a higher glucose consumption rate, a higher lactate production rate and reduced growth. The potential of using flow cytometric cell sorting methods based on physiological activity for cell line optimisation is discussed.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.