OBJECTIVEThe incidence of the metabolic syndrome and type 2 diabetes mellitus (T2DM) is rising worldwide. Liver-derived fibroblast growth factor (FGF)-21 affects glucose and lipid metabolism. The aim of this study was to analyze the predictive value of FGF-21 on the incidence of T2DM and the metabolic syndrome.RESEARCH DESIGN AND METHODSThe Metabolic Syndrome Berlin Potsdam (MeSyBePo) recall study includes 440 individuals. Glucose metabolism was analyzed using an oral glucose tolerance test, including insulin measurements. FGF-21 was measured using enzyme-linked immunosorbent assay. Primary study outcome was diabetes and the metabolic syndrome incidence and change of glucose subtraits.RESULTSDuring a mean follow-up of 5.30 ± 0.1 years, 54 individuals developed the metabolic syndrome, 35 developed T2DM, and 69 with normal glucose tolerance at baseline progressed to impaired glucose metabolism, defined as impaired fasting glucose, impaired glucose tolerance, or T2DM. FGF-21 predicted incident metabolic syndrome (lnFGF-21 odds ratio [OR] 2.6 [95% CI 1.5 – 4.5]; P = 0.001), T2DM (2.4 [1.2–4.7]; P = 0.01), and progression to impaired glucose metabolism (2.2 [1.3 – 3.6]; P = 0.002) after adjustment for age, sex, BMI, and follow-up time. Additional adjustment for waist-to-hip ratio, systolic blood pressure, HDL cholesterol, triglycerides, and fasting glucose did not substantially modify the predictive value of FGF-21.CONCLUSIONSFGF-21 is an independent predictor of the metabolic syndrome and T2DM in apparently healthy Caucasians. These results may indicate FGF-21 resistance precedes the onset of the metabolic syndrome and T2DM.
We describe six persons from three families with three homozygous protein truncating variants in PUS7: c.89_90del (p.Thr30Lysfs*20), c.1348C>T (p.Arg450*), and a deletion of the penultimate exon 15. All these individuals have intellectual disability with speech delay, short stature, microcephaly, and aggressive behavior. PUS7 encodes the RNA-independent pseudouridylate synthase 7. Pseudouridylation is the most abundant post-transcriptional modification in RNA, which is primarily thought to stabilize secondary structures of RNA. We show that the disease-related variants lead to abolishment of PUS7 activity on both tRNA and mRNA substrates. Moreover, pus7 knockout in Drosophila melanogaster results in a number of behavioral defects, including increased activity, disorientation, and aggressiveness supporting that neurological defects are caused by PUS7 variants. Our findings demonstrate that RNA pseudouridylation by PUS7 is essential for proper neuronal development and function.
Bone is a complex tissue with a variety of functions, such as providing mechanical stability for locomotion, protection of the inner organs, mineral homeostasis and haematopoiesis. To fulfil these diverse roles in the human body, bone consists of a multitude of different cells and an extracellular matrix that is mechanically stable, yet flexible at the same time. Unlike most tissues, bone is under constant renewal facilitated by a coordinated interaction of bone-forming and bone-resorbing cells. It is thus challenging to recreate bone in its complexity in vitro and most current models rather focus on certain aspects of bone biology that are of relevance for the research question addressed. In addition, animal models are still regarded as the gold-standard in the context of bone biology and pathology, especially for the development of novel treatment strategies. However, species-specific differences impede the translation of findings from animal models to humans. The current review summarizes and discusses the latest developments in bone tissue engineering and organoid culture including suitable cell sources, extracellular matrices and microfluidic bioreactor systems. With available technology in mind, a best possible bone model will be hypothesized. Furthermore, the future need and application of such a complex model will be discussed.
Head and neck squamous cell carcinoma (HNSCC) is the sixth most commonly diagnosed cancer worldwide. Despite advances in the treatment management, locally advanced disease has a poor prognosis, with a 5-year survival rate of approximately 50%. The growth of HNSCC is maintained by a population of cancer stem cells (CSCs) which possess unlimited self-renewal potential and induce tumor regrowth if not completely eliminated by therapy. The population of CSCs is not only a promising target for tumor treatment, but also an important biomarker to identify the patients at risk for therapeutic failure and disease progression. This review aims to provide an overview of the recent pre-clinical and clinical studies on the biology and potential therapeutic implications of HNSCC stem cells.
Background
The reliable detection of SARS-CoV-2 has become one of the most important contributions to COVID-19 crisis management. With the publication of the first sequences of SARS-CoV-2, several diagnostic PCR assays have been developed and published. In addition to in-house assays the market was flooded with numerous commercially available ready-to-use PCR kits, with both approaches showing alarming shortages in reagent supply.
Aim
Here we present a resource-efficient in-house protocol for the PCR detection of SARS-CoV-2 RNA in patient specimens (RKI/ZBS1 SARS-CoV-2 protocol).
Methods
Two duplex one-step real-time RT-PCR assays are run simultaneously and provide information on two different SARS-CoV-2 genomic regions. Each one is duplexed with a control that either indicates potential PCR inhibition or proves the successful extraction of nucleic acid from the clinical specimen.
Results
Limit of RNA detection for both SARS-CoV-2 assays is below 10 genomes per reaction. The protocol enables testing specimens in duplicate across the two different SARS-CoV-2 PCR assays, saving reagents by increasing testing capacity. The protocol can be run on various PCR cyclers with several PCR master mix kits.
Conclusion
The presented RKI/ZBS1 SARS-CoV-2 protocol represents a cost-effective alternative in times of shortages when commercially available ready-to-use kits may not be available or affordable.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.