Selenium (Se) is considered a beneficial element for plants; however, in high concentrations, it causes negative effects on plant physiology and development. This study reports the first physiological, nutritional, and ultrastructural description of Se toxicity in cowpea growing under field conditions. Selenium was supplied as a foliar application of sodium selenite at varying concentrations (0, 50, 100, 200, 400, 800, 1200, and 1600 g ha −1). An increased yield was observed with the application of 50 g ha −1 Se. Application of concentrations higher than 50 g ha −1 caused leaf toxicity. Increased lipid peroxidation and hydrogen peroxide concentration and reduced total sugars, sucrose, and carotenoid concentration were observed at highest doses tested (1200 and 1600 g ha −1). Applications of more than 50 g ha −1 Se reduced the phloem diameter, caused chlorosis of the leaf blade with a coalescence of lesions, and caused pink salt deposits to appear. Lesions were observed mainly near the trichomes on the adaxial surface of the leaf blade. An analysis of the element distribution with microprobe Xray fluorescence spectrometry (μ-XRF) revealed accumulation of Se, calcium (Ca), potassium (K), copper (Cu), and manganese (Mn) near the primary vein and in the necrotic brown areas of the leaf lesions. In contrast, Na was homogeneously distributed in the leaf tissue.
The fuzzy logic accepts infinite intermediate logical values between false and true. In view of this principle, a system based on fuzzy rules was established to provide the best management of Catasetum fimbriatum. For the input of the developed fuzzy system, temperature and shade variables were used, and for the output, the orchid vitality. The system may help orchid experts and amateurs to manage this species. "Low" (L), "Medium" (M) and "High" (H) were used as linguistic variables. The objective of the study was to develop a system based on fuzzy rules to improve management of the Catasetum fimbriatum species, as its production presents some difficulties, and it offers high added value. RESUMOA lógica fuzzy admite infinitos valores lógicos intermediários entre o falso e o verdadeiro. Com esse princípio, foi elaborado neste trabalho um sistema baseado em regras fuzzy, que indica a melhor forma de manejar a espécie Catasetum fimbriatum. O sistema fuzzy desenvolvido teve como entradas as variáveis temperatura e sombreamento, e a saída à vitalidade das orquídeas, que poderá auxiliar os orquidófilos no manejo da espécie, e foram utilizadas as variáveis linguísticas "Baixo" (B), "Médio" (M) e "Alto" (A). O objetivo deste trabalho é desenvolver um sistema baseado em regras fuzzy para auxiliar no manejo da espécie Catasetum fimbriatum, pois se trata de uma espécie de difícil cultivo e de alto valor agregado.Palavras-chave: Manejo, cultivar, habitat e sistemas Fuzzy
The fuzzy logic admits infinite intermediate logical values between false and true. With this principle, it developed in this study a system based on fuzzy rules, which indicates the body mass index of ruminant animals in order to obtain the best time to slaughter. The controller developed has as input the variables weight and height, and as output a new body mass index, called Fuzzy Body Mass Index (Fuzzy BMI), which may serve as a detection system at the time of livestock slaughtering, comparing one another by the linguistic variables "Very Low", "Low", "Average ", "High" and "Very High". For demonstrating the use application of this fuzzy system, an analysis was made with 147 Nellore beeves to determine Fuzzy BMI values for each animal and indicate the location of body mass of any herd. The performance validation of the system was based on a statistical analysis using the Pearson correlation coefficient of 0.923, representing a high positive correlation, indicating that the proposed method is appropriate. Thus, this method allows the evaluation of the herd comparing each animal within the group, thus providing a quantitative method of farmer decision. It was concluded that this study established a computational method based on fuzzy logic that mimics part of human reasoning and interprets the body mass index of any bovine species and in any region of the country.
This study aimed to develop a fuzzy mathematical model to estimate the impacts of global warming on the vitality of Laelia purpurata growing in different Brazilian environmental conditions. In order to develop the mathematical model was considered as intrinsic factors the parameters: temperature, humidity and shade conditions to determine the vitality of plants. Fuzzy model results could accurately predict the optimal conditions for cultivation of Laelia purpurata in several sites of Brazil. Based on fuzzy model results, we found that higher temperatures and lacking of properly shading can reduce the vitality of orchids. Fuzzy mathematical model could precisely detect the effect of higher temperatures causing damages on vitality of plants as a consequence of global warming.
Nickel (Ni) is a cofactor for urease, an enzyme that breaks down urea into ammonia and carbon dioxide. This study aimed to evaluate the physiological impact of Ni on urea, antioxidant metabolism and powdery mildew severity in soybean plants. Seven levels of Ni (0, 10, 20, 40, 60, 80 and 100 g ha À1) alone or combined with the fungicides fluxapyroxad and pyraclostrobin were applied to soybean plants. The total Ni concentration ranged from 3.8 to 38.0 mg kg À1 in leaves and 3.0 to 18.0 mg kg À1 in seeds. A strong correlation was observed between Ni concentration in the leaves and seeds, indicating translocation of Ni from leaves to seeds. Application of Ni above 60 g ha À1 increased lipid peroxidation in the leaf tissues, indicative of oxidative stress. Application of 40 g ha À1 Ni combined with 300 mL ha À1 of fungicide reduced powdery mildew severity by up to 99%. Superoxide dismutase, catalase, peroxidase and urease enzyme activity were greatest under these conditions. Urea concentration decreased in response to Ni application. Urease activity in soybean leaves showed a negative correlation with powdery mildew severity. The leaf Ni concentration showed a positive correlation with the urease and a negative correlation with powdery mildew severity. The results of this study suggest that urease is a key enzyme regulated by Ni and has a role in host defence against powdery mildew by stimulating antioxidant metabolism in soybean plants.
<span lang="EN-US">Coffee cultivation has undergone significant changes, especially with regard to the mechanization process of the various existing operations that were previously carried out manually by the workers. It is observed that the intensification of mechanized activities can expose workers to noise levels capable of compromising their hearing health. In this sense, the objective of the present study was to determine the level of occupational noise in the activities of mechanized and semi-mechanized harvesting of coffee fruits and compare them with the limits of tolerance of the current legislation. The occupational noise level was determined considering the exposure of homogeneous groups, using an integrative meter for personal use, noise dosimeter, electromechanically calibrated and with field calibration. The results demonstrate that the noise levels found are above the limits allowed for an 8-hour working day. The highest observed level was 100.66 dB (A) in the sweeping operation with the blower equipment and the lowest level 89.05 dB (A) in the auxiliary activity of the selected collection equipment Vicon H3000. Harvesting activity with a portable </span><span lang="EN-US">mechanical stripper <span>equipment showed a noise level 4.07% higher compared to harvesting with automotive harvester equipment.</span></span>
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers