Galactose‐deficient IgA1 (Gd‐IgA1) plays a crucial role in the development of Immunoglobulin A nephropathy (IgAN), however, the underlying pathogenic mechanisms driving Gd‐IgA1 production in B cells are not well understood. In this study, RNA‐seq analysis identified 337 down‐regulated and 405 up‐regulated genes in B cells from 17 patients with IgAN and 6 healthy controls. Among them, ST6Gal1, which was associated with IgAN in a previous genome‐wide association study (GWAS), was up‐regulated in IgAN and significantly positive correlated with elevated Gd‐IgA1. In addition, we identified increased plasma ST6Gal1 levels in 100 patients with IgAN, which were associated with higher levels of proteinuria, plasma IgA, Gd‐IgA1 levels, greater degrees of systemic complement activation including C3a, Bb, C4d, MAC and a lower proportion classified as C2 grade (crescent proportion ≥25%). Interesting, in vitro, recombinant ST6Gal1 (rST6Gal1) exposure reduced the production of Gd‐IgA1 in cultured peripheral blood mononuclear cells from IgAN patients. rST6Gal1 stimuli also increased expression of C1GALT1, which were well‐known proportional to the decrease in galactose deficiency of IgA1. In conclusions, we identified increased plasma ST6Gal1 levels and the association of ST6Gal1 with disease severity of IgAN. Additionally, rST6Gal1 administration in vitro increased expression of C1GALT1 and reduced the production of Gd‐IgA1.
Background: Our previous study revealed that plasma levels of a-2,6-sialyltransferase 1 (ST6GAL1) were increased in patients with IgA nephropathy (IgAN). ST6GAL1 catalyzes terminal sialylation of IgG to shift the antibody effector function to the anti-inflammatory pattern. However, the role of plasma ST6GAL1 in the progression of IgAN and underlying mechanisms are still unknown. Methods: A total of 180 IgAN patients were included. The kidney outcomes were defined as the eGFR decline or proteinuria remission. Peripheral blood mononuclear cells (PBMCs) were either stimulated with purified sialylated IgG (SA-IgG) or with non-sialylated IgG (NSA-IgG) from IgAN patients to detect the levels of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) in supernatant. Results: Compared with the lower ST6GAL1 (reference), the risk of eGFR decline decreased for the higher ST6GAL1 group after adjustment for baseline eGFR, systolic blood pressure (SBP), and proteinuria. The results showed that patients with higher ST6GAL1 levels had a higher rate of proteinuria remission. ST6GAL1, expressed as a continuous variable, was a protective factor for eGFR decline and proteinuria remission. An in vitro study showed that the administration of recombinant ST6GAL1 (rST6GAL1) decreased the levels of IL-6 and TNF-α in PBMCs. Furthermore, the administration of rST6GAL1 resulted in the enrichment of SA-IgG in a concentration-dependent manner. In addition, as compared to control, purified SA-IgG-treated PBMCs showed a significant decrease in the expression of IL-6 and TNF-α. Conclusion: Our study indicated that elevated ST6GAL1 was associated with a slower progression of IgAN, which may play a protective effect by increasing IgG sialylation to inhibit the production of proinflammatory cytokines in PBMCs.
Background The addition of sialic acid alters IgG from a pro-inflammatory state to an anti-inflammatory state. However, there is a lack of research on the changes of IgG sialylation in IgA nephropathy (IgAN). Methods This study included a total of 184 IgAN patients. The sialylated IgG (SA-IgG), IgG-galactose-deficient IgA1 complex (IgG-Gd-IgA1-IC), IL-6, TNF-α, and TGF-β were detected using commercial ELISA kits. SA-IgG, non-sialylated IgG (NSA-IgG), sialylated IgG-IgA1 complex (SA-IgG-IgA1), and non-sialylated IgG-IgA1 complex (NSA-IgG-IgA1) were purified from IgAN patients and healthy controls (HCs). Results The mean SA-IgG levels in plasma and B lymphocytes in IgAN patients were significantly higher than those of healthy controls. A positive correlation was found between SA-IgG levels in plasma and B lymphocytes. In vitro, the results showed that the release of IgG-Gd-IgA1-IC was significantly decreased in peripheral blood mononuclear cells (PBMCs) cultured with SA-IgG from both IgAN patients and healthy controls. The proliferation ability and the release of IL-6, TNF-α, and TGF-β in human mesangial cells (HMCs) were measured after stimulating with SA-IgG-IgA1-IC and NSA-IgG-IgA1-IC. The mesangial cell proliferation levels induced by NSA-IgG-IgA1-IC derived from IgAN patients were significantly higher than those caused by SA-IgG-IgA1-IC derived from IgAN patients and healthy controls. Compared with NSA-IgG-IgA1 from healthy controls, IgAN-NSA-IgG-IgA1 could significantly upregulate the expression of IL-6 and TNF-α in mesangial cells. The data showed that there weren’t any significant differences in the levels of IL-6, TNF-α, and TGF-β when treated with IgAN-SA-IgG-IgA1 and HC-NSA-IgG-IgA1. Conclusions The present study demonstrated that the sialylation of IgG increased in patients with IgA nephropathy. It exerted an inhibitory effect on the formation of Gd-IgA1-containing immune complexes in PBMCs and the proliferation and inflammation activation in mesangial cells.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers