Background
The monogenean Benedenia seriolae parasitizes fishes belonging to the genus Seriola, represents a species complex, and causes substantial impact on fish welfare in aquaculture systems worldwide. This study reports, for the first time, the complete mitochondrial genome of B. humboldti n. sp., a new cryptic species from the South-East Pacific (SEP).
Methods
The mitogenome of B. humboldti n. sp. was assembled from short Illumina 150 bp pair-end reads. The phylogenetic position of B. humboldti n. sp. among other closely related congeneric and confamiliar capsalids was examined using mitochondrial protein-coding genes (PCGs). Morphology of B. humboldti n. sp. was examined based on fixed and stained specimens.
Results
The AT-rich mitochondrial genome of B. humboldti is 13,455 bp in length and comprises 12 PCGs (atp8 was absent as in other monogenean genomes), 2 ribosomal RNA genes, and 22 transfer RNA genes. All protein-coding, ribosomal RNA, and transfer RNA genes are encoded on the H-strand. The gene order observed in the mitochondrial genome of B. humboldti n. sp. was identical to that of B. seriolae from Japan but different from that of B. seriolae from Australia. The genetic distance between B. humboldti n. sp. and B. seriolae from Japan was high. Minor but reliable differences in the shape of the penis were observed between Benedenia humboldti n. sp. and congeneric species.
Conclusions
Phylogenetic analyses based on PCGs in association with differences in the shape of the penis permitted us to conclude that the material from the South-East Pacific represents a new species of Benedenia infecting S. lalandi off the coast of Chile. The discovery of this parasite represents the first step to improving our understanding of infestation dynamics and to develop control strategies for this pathogen infecting the farmed yellowtail kingfish, Seriola lalandi, in the South-East Pacific.
BackgroundThe monogenean, Zeuxapta seriolae, is a host-specific parasite that has an extensive geographical distribution on its host, Seriola lalandi, and is considered highly pathogenic in farmed fish. In recent years, developing cultures of S. lalandi in different coastal localities in Southeastern Pacific Ocean (SEP) have been affected by moderate and heavy infections of this parasite, attributed to contagion from wild to farmed fish. Here, we evaluated the pattern of genetic variations and biological traits of Z. seriolae in a spatial and temporal scale across its geographical distribution in SEP to determine its genetic status and biological traits, which could affect its transmission dynamics from wild to farmed fish.MethodsWild fish and their parasites were sampled from fisheries in the northern Chilean coast (NCC: 24°S-30°S) and Eastern islands (JFA: ca 33°S; 80°W) between 2012 and 2014. Fragments of 816 bp of the cytochrome c oxidase subunit I (COI) gene was sequenced for 112 individuals from NCC and 63 from JFA and compared using AMOVA. Prevalence and intensity of Z. seriolae were calculated for each area. The parasite body size, fecundity and size at sexual maturity were estimated for 177 parasites from NCC and 128 from JFA, and significant differences were evaluated using GLM.ResultsGeographical genetic structuring was detected for Z. seriolae across SEP, with a population in NCC and the other in JFA, both with the same high haplotype diversity. Neutrality tests and mismatch analyses indicated that both Z. seriolae populations are stable. Parasite biological traits such as fecundity, body size, and size at sexual maturity, and population parameters varied significantly between geographical areas.ConclusionTwo genetic groups of Z. seriolae were detected in wild fish across SEP. Because of the seasonal migration of wild host and temporal contact with farming, quantifying the genetic diversity and level of gene flow or isolation between parasite populations is useful for fish health management in farming. The smallest size of sexual maturity in parasites from NCC is predictive of shorter life cycles, and their high genetic diversity suggests high evolutionary potential and high transmission of this parasite to farmed hosts.
Two new species, Encotyllabe cheilodactyli and Encotyllabe antofagastensis (Monogenea: Capsalidae), have been found in the pharyngeal plates of Cheilodactylus variegatus and Anisotremus scapularis, respectively, in northern Chile (23°38'N, 70°24'W). Descriptions of the new species were based on morphometric and molecular evidence. Both species differ from previously described species of the genus by a combination of characteristics, including the size and relative position of the testes and the shapes of the major and small hamulus. In addition, E. cheilodactyli is unique among the known species of Encotyllabe due to the testes crossing the equatorial line of the body proper, and E. antofagastensis is unique among the known species of Encotyllabe due to its penis structure and anatomy leading to the genital pore. The analysis of the cytochrome c oxidase I gene as well as morphometric analyses demonstrated that the specimens belonged to 2 different species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.