Food security, lowering the risk of climate change and meeting the increasing demand for energy will increasingly be critical challenges in the years to come. Producing sustainably is therefore becoming central in agriculture and food systems. Legume crops could play an important role in this context by delivering multiple services in line with sustainability principles. In addition to serving as fundamental, worldwide source of high-quality food and feed, legumes contribute to reduce the emission of greenhouse gases, as they release 5–7 times less GHG per unit area compared with other crops; allow the sequestration of carbon in soils with values estimated from 7.21 g kg−1 DM, 23.6 versus 21.8 g C kg−1 year; and induce a saving of fossil energy inputs in the system thanks to N fertilizer reduction, corresponding to 277 kg ha−1 of CO2 per year. Legumes could also be competitive crops and, due to their environmental and socioeconomic benefits, could be introduced in modern cropping systems to increase crop diversity and reduce use of external inputs. They also perform well in conservation systems, intercropping systems, which are very important in developing countries as well as in low-input and low-yield farming systems. Legumes fix the atmospheric nitrogen, release in the soil high-quality organic matter and facilitate soil nutrients’ circulation and water retention. Based on these multiple functions, legume crops have high potential for conservation agriculture, being functional either as growing crop or as crop residue. [Figure not available: see fulltext.
In the last decade, there has been an increase in the use of sprouted grains in human diet and a parallel increase in the scientific literature dealing with their nutritional traits and phytochemical contents. This review examines the physiological and biochemical changes during the germination process, and the effects on final sprout composition in terms of macro- and micro-nutrients and bioactive compounds. The main factors affecting sprout composition are taken into consideration: genotype, environmental conditions experimented by the mother plant, germination conditions. In particular, the review deepens the recent knowledge on the possible elicitation factors useful for increasing the phytochemical contents. Microbiological risks and post-harvest technologies are also evaluated, and a brief summary is given of some important in vivo studies matching with the use of grain sprouts in the diet. All the species belonging to Poaceae (Gramineae) family as well as pseudocereals species are included.
Our evidence suggests that the grains of einkorn and emmer and the sprouts and wheatgrass of all Triticum species might potentially be valuable for the development of functional foods.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.