Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bell's inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every experiment requires assumptions that provide loopholes for a local realist explanation. Here, we report a Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a violation of a Bell inequality with high statistical significance. The purely statistical probability of our results to occur under local realism does not exceed 3.74 × 10 −31 , corresponding to an 11.5 standard deviation effect.
Tests of the predictions of quantum mechanics for entangled systems have provided increasing evidence against local realistic theories. However, there still remains the crucial challenge of simultaneously closing all major loopholesthe locality, freedom-of-choice, and detection loopholes in a single experiment. An important sub-class of local realistic theories can be tested with the concept of "steering". The term steering was introduced by Schrödinger in 1935 for the fact that entanglement would seem to allow an experimenter to remotely steer the state of a distant system as in the Einstein-Podolsky-Rosen (EPR) argument. Einstein called this "spooky action at a distance". EPR-Steering has recently been rigorously formulated as a quantum information task opening it up to new experimental tests. Here, we present the first loophole-free demonstration of EPR-steering by violating three-setting quadratic steering inequality, tested with polarization entangled photons shared between two distant laboratories. Our experiment demonstrates this effect while simultaneously closing all loopholes: both the locality loophole and a specific form of the freedom-of-choice loophole are closed by having a large separation of the parties and using fast quantum random number generators, and the fair-sampling loophole is closed by having high overall detection efficiency. Thereby, we excludefor the first time loophole-freean important class of local realistic theories considered by EPR. As well as its foundational importance, loop-hole-free steering also allows the distribution of quantum entanglement secure from an untrusted party.
Bell's theorem states that some predictions of quantum mechanics cannot be reproduced by a localrealist theory. That conflict is expressed by Bell's inequality, which is usually derived under the assumption that there are no statistical correlations between the choices of measurement settings and anything else that can causally affect the measurement outcomes. In previous experiments, this "freedom of choice" was addressed by ensuring that selection of measurement settings via conventional "quantum random number generators" was spacelike separated from the entangled particle creation. This, however, left open the possibility that an unknown cause affected both the setting choices and measurement outcomes as recently as mere microseconds before each experimental trial. Here we report on a new experimental test of Bell's inequality that, for the first time, uses distant astronomical sources as "cosmic setting generators." In our tests with polarization-entangled photons, measurement settings were chosen using real-time observations of Milky Way stars while simultaneously ensuring locality. Assuming fair sampling for all detected photons, and that each stellar photon's color was set at emission, we observe statistically significant ≳7.31σ and ≳11.93σ violations of Bell's inequality with estimated p values of ≲1.8 × 10 −13 and ≲4.0 × 10 −33 , respectively, thereby pushing back by ∼600 years the most recent time by which any local-realist influences could have engineered the observed Bell violation.
Quantum networks scale the advantages of quantum communication protocols to more than just two distant users. Here we present a fully connected quantum network architecture in which a single entangled photon source distributes quantum states to a multitude of users. Our network architecture thus minimizes the resources required of each user without sacrificing security or functionality. As no adaptations of the source are required to add users, the network can readily be scaled to a large number of clients, whereby no trust in the provider of the quantum source is required. Unlike previous attempts at multi-user networks, which have been based on active components, and thus limited to some duty cycle, our implementation is fully passive and thus provides the potential for unprecedented quantum communication speeds. We experimentally demonstrate the feasibility of our approach using a single source of bi-partite polarization entanglement which is multiplexed into 12 wavelength channels to distribute 6 states between 4 users in a fully connected graph using only 1 fiber and polarization analysis module per user. I. QUANTUM KEY DISTRIBUTION NETWORKSQuantum Key Distribution (QKD) [1,2] has reached the level of maturity required for deployment in realworld scenarios [3][4][5][6][7], and has been shown to operate alongside classical communication in the same deployed telecommunication fiber [8-10] and even over long distances in both fiber [11,12] and free-space links [13][14][15][16][17].Despite these great advances, the practical applicability of QKD is severely curtailed by the fact that most implementations and protocols are limited to two communicating parties.The pressing need to adapt quantum communication to more than two users has motivated several attempts at quantum networks. The QKD networks demonstrated thus far can be roughly grouped into four types of configurations [18]:First, Quantum repeater networks [19] which use quantum memories and entanglement swapping to extend and route quantum states and form arbitrary network topologies. However, technological advancement in quantum memories are needed until quantum repeater networks can be considered practical. Note that quantum repeaters can also be used to improve the performance of the following types of quantum networks.Another approach to multi-user networks is to use high-dimensional/multi-partite entanglement to share entanglement resources between several users [20][21][22]. This way different users share different subspaces of the Hilbert space to generate their keys. However, adding * Correspondence and requests for materials should be addressed to Sören Wengerowsky and Rupert Ursin. † Soeren.Wengerowsky@oeaw.ac.at ‡ Rupert.Ursin@oeaw.ac.at or removing users requires changes in the dimensionality of the system which makes complex alterations of the source necessary.The third approach are trusted node networks: They amount to a mesh of point-to-point links, each requiring a complete two-party communication setup. While trusted nodes have been used t...
Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.
In this Letter, we present a cosmic Bell experiment with polarization-entangled photons, in which measurement settings were determined based on real-time measurements of the wavelength of photons from high-redshift quasars, whose light was emitted billions of years ago; the experiment simultaneously ensures locality. Assuming fair sampling for all detected photons and that the wavelength of the quasar photons had not been selectively altered or previewed between emission and detection, we observe statistically significant violation of Bell's inequality by 9.3 standard deviations, corresponding to an estimated p value of ≲7.4 × 10 −21 . This experiment pushes back to at least ∼7.8 Gyr ago the most recent time by which any local-realist influences could have exploited the "freedom-of-choice" loophole to engineer the observed Bell violation, excluding any such mechanism from 96% of the space-time volume of the past light cone of our experiment, extending from the big bang to today.
Quantum entanglement is a fundamental resource in quantum information processing and its distribution between distant parties is a key challenge in quantum communications. Increasing the dimensionality of entanglement has been shown to improve robustness and channel capacities in secure quantum communications. Here we report on the distribution of genuine high-dimensional entanglement via a 1.2-km-long free-space link across Vienna. We exploit hyperentanglement, that is, simultaneous entanglement in polarization and energy-time bases, to encode quantum information, and observe high-visibility interference for successive correlation measurements in each degree of freedom. These visibilities impose lower bounds on entanglement in each subspace individually and certify four-dimensional entanglement for the hyperentangled system. The high-fidelity transmission of high-dimensional entanglement under real-world atmospheric link conditions represents an important step towards long-distance quantum communications with more complex quantum systems and the implementation of advanced quantum experiments with satellite links.
Although it is not straightforward to certify highdimensional entanglement from experimental data, its production in the process of spontaneous parametric down-conversion (SPDC) happens naturally. As a result of conservation laws in this process, the down-converted photon pairs are entangled in spatio-temporal properties such as energy-time [15][16][17][18], angle-angular momentum [19][20][21][22] and position-momentum [23][24][25].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.