Abstract-In this paper we review the most peculiar and interesting information-theoretic and communications features of fading channels. We first describe the statistical models of fading channels which are frequently used in the analysis and design of communication systems. Next, we focus on the information theory of fading channels, by emphasizing capacity as the most important performance measure. Both single-user and multiuser transmission are examined. Further, we describe how the structure of fading channels impacts code design, and finally overview equalization of fading multipath channels.
The principle of coding in the signal space follows directly from Shannon's analysis of waveform Gaussian channels subject to an input constraint. The early design of communication systems focused separately on modulation, namely signal design and detection, and error correcting codes, which deal with errors introduced at the demodulator of the underlying waveform channel. The correct perspective of signalspace coding, although never out of sight of information theorists, was brought back into the focus of coding theorists and system designers by Imai's and Ungerböck's pioneering work on coded modulation. More recently, powerful families of binary codes with a good tradeoff between performance and decoding complexity have been (re-) discovered. Bit-Interleaved Coded Modulation (BICM) is a pragmatic approach combining the best out of both worlds: it takes advantage of the signal-space coding perspective, whilst allowing for the use of powerful families of binary codes with virtually any modulation format.BICM avoids the need for the complicated and somewhat less flexible design typical of coded modulation. As a matter of fact, most of today's systems that achieve high spectral efficiency such as DSL, Wireless LANs, WiMax and evolutions thereof, as well as systems based on low spectral efficiency orthogonal modulation, feature BICM, making BICM the de-facto general coding technique for waveform channels. The theoretical characterization of BICM is at the basis of efficient coding design techniques and also of improved BICM decoders, e.g., those based on the belief propagation iterative algorithm and approximations thereof. In this monograph, we review the theoretical foundations of BICM under the unified framework of error exponents for mismatched decoding. This framework allows an accurate analysis without any particular assumptions on the length of the interleaver or independence between the multiple bits in a symbol. We further consider the sensitivity of the BICM capacity with respect to the signal-to-noise ratio (SNR), and obtain a wideband regime (or low-SNR regime) characterization. We review efficient tools for the error probability analysis of BICM that go beyond the standard approach of considering infinite interleaving and take into consideration the dependency of the coded bit observations introduced by the modulation. We also present bounds that improve upon the union bound in the region beyond the cutoff rate, and are essential to characterize the performance of modern randomlike codes used in concatenation with BICM. Finally, we turn our attention to BICM with iterative decoding, we review extrinsic information transfer charts, the area theorem and code design via curve fitting. We conclude with an overview of some applications of BICM beyond the classical coherent Gaussian channel.
Multiple-input multiple-output (MIMO) technology constitutes a breakthrough in the design of wireless communications systems, and is already at the core of several wireless standards. Exploiting multipath scattering, MIMO techniques deliver significant performance enhancements in terms of data transmission rate and interference reduction. This 2007 book is a detailed introduction to the analysis and design of MIMO wireless systems. Beginning with an overview of MIMO technology, the authors then examine the fundamental capacity limits of MIMO systems. Transmitter design, including precoding and space-time coding, is then treated in depth, and the book closes with two chapters devoted to receiver design. Written by a team of leading experts, the book blends theoretical analysis with physical insights, and highlights a range of key design challenges. It can be used as a textbook for advanced courses on wireless communications, and will also appeal to researchers and practitioners working on MIMO wireless systems.
The principle of coding in the signal space follows directly from Shannon's analysis of waveform Gaussian channels subject to an input constraint. The early design of communication systems focused separately on modulation, namely signal design and detection, and error correcting codes, which deal with errors introduced at the demodulator of the underlying waveform channel. The correct perspective of signalspace coding, although never out of sight of information theorists, was brought back into the focus of coding theorists and system designers by Imai's and Ungerböck's pioneering work on coded modulation. More recently, powerful families of binary codes with a good tradeoff between performance and decoding complexity have been (re-) discovered. Bit-Interleaved Coded Modulation (BICM) is a pragmatic approach combining the best out of both worlds: it takes advantage of the signal-space coding perspective, whilst allowing for the use of powerful families of binary codes with virtually any modulation format.BICM avoids the need for the complicated and somewhat less flexible design typical of coded modulation. As a matter of fact, most of today's systems that achieve high spectral efficiency such as DSL, Wireless LANs, WiMax and evolutions thereof, as well as systems based on low spectral efficiency orthogonal modulation, feature BICM, making BICM the de-facto general coding technique for waveform channels. The theoretical characterization of BICM is at the basis of efficient coding design techniques and also of improved BICM decoders, e.g., those based on the belief propagation iterative algorithm and approximations thereof. In this monograph, we review the theoretical foundations of BICM under the unified framework of error exponents for mismatched decoding. This framework allows an accurate analysis without any particular assumptions on the length of the interleaver or independence between the multiple bits in a symbol. We further consider the sensitivity of the BICM capacity with respect to the signal-to-noise ratio (SNR), and obtain a wideband regime (or low-SNR regime) characterization. We review efficient tools for the error probability analysis of BICM that go beyond the standard approach of considering infinite interleaving and take into consideration the dependency of the coded bit observations introduced by the modulation. We also present bounds that improve upon the union bound in the region beyond the cutoff rate, and are essential to characterize the performance of modern randomlike codes used in concatenation with BICM. Finally, we turn our attention to BICM with iterative decoding, we review extrinsic information transfer charts, the area theorem and code design via curve fitting. We conclude with an overview of some applications of BICM beyond the classical coherent Gaussian channel.
Abstract-We focus on full-rate, fast-decodable space-time block codes (STBCs) for 2 2 2 and 4 2 2 multiple-input multiple-output (MIMO) transmission. We first derive conditions and design criteria for reduced-complexity maximum-likelihood (ML) decodable 2 2 2 STBCs, and we apply them to two families of codes that were recently discovered. Next, we derive a novel reduced-complexity 4 2 2 STBC, and show that it outperforms all previously known codes with certain constellations.Index Terms-Alamouti code, decoding complexity, multiple-input multiple-output (MIMO), quasi-orthogonal space-time block codes (STBCs), sphere decoder.
We derive the performance limits of a radio system consisting of a transmitter with Ø antennas and a receiver with Ö antennas, a block-fading channel with additive white Gaussian noise, delay and transmit-power constraints, and perfect channel-state information available at both transmitter and receiver. Because of a delay constraint, the transmission of a code word is assumed to span a finite (and typically small) number Å of independent channel realizations; therefore, the relevant performance limits are the information outage probability and the "delay-limited" (or "non-ergodic") capacity [11, 16, 35]. We derive the coding scheme that minimizes the information outage probability. This scheme can be interpreted as the concatenation of an optimal code for the AWGN channel without fading to an optimal beamformer. For this optimal scheme we evaluate minimum-outage-probability and delay-limited capacity. Among other results, we prove that, for the fairly general class of regular fading channels, the asymptotic delay-limited capacity slope, expressed in bit/s/Hz per dB of transmit SNR, is proportional to Ñ Ò´Ø Öµ and independent of the number of fading blocks Å. Since Å is a measure of the time diversity (induced by interleaving) or of the frequency diversity of the system, this result shows that, if channel-state information is available also to the transmitter, very high rates with asymptotically small error probabilities are achievable without need of deep interleaving or high frequency diversity. Moreover, for a large number of antennas the delay-limited capacity approaches the ergodic capacity.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers