Cutaneous lesions occur in up to 25% of patients with chronic lymphocytic leukemia (CLL). These can be caused by either cutaneous seeding by leukemic cells (leukemia cutis, LC) and other malignant diseases or nonmalignant disorders. Skin infiltration with B-lymphocyte CLL manifests as solitary, grouped, or generalized papules, plaques, nodules, or large tumors. Prognosis in CLL patients with LC is rather good and many authors claim that it does not significantly affect patients' survival. However, prognosis is poor in patients in whom LC shows blastic transformation (Richter's syndrome) and when leukemic infiltrations in the skin appear after the diagnosis of CLL. Secondary cutaneous malignancies are also frequent complications in patients with CLL. A higher risk was seen in skin cancer, for which eightfold higher occurrence has been stated. There are some suggestions that alkylating agents and purine analogs may be associated with an increased incidence of secondary malignancies in CLL. Nonspecific, secondary cutaneous lesions are frequently observed in CLL patients. The most common secondary cutaneous changes seen in CLL are those of infectious or hemorrhagic origin. Other secondary lesions present as vasculitis, purpura, generalized pruritus, exfoliative erythroderma, and paraneoplastic pemphigus. An exaggerated reaction to an insect bite and insect bite-like reactions have been also observed.
The purine nucleoside analogs (PNA) form an important group of cytotoxic drugs active in the treatment of neoplastic and autoimmune diseases. Three of them, fludarabine (FA), cladribine (2-chlorodeoxyadenosine, 2-CdA) and pentostatin (2'-deoxycoformycin, DCF) have established clinical activity in hematological malignancies and have been approved by FDA. These drugs are also investigated in some autoimmune diosorders. Recently four novel PNA: clofarabine (CAFdA), nelarabine, immucillin H (BCX-1777, forodesine) and 8-chloroadenosine (8-Cl-Ado) have been synthesized and introduced into clinical trials. All these drugs have chemical structure similar to adenosine or guanosine, however, the mechanism of their action is different. FA, 2-CdA and CAFdA mainly require phosphorylation by deoxynucleoside salvage pathways. The cytotoxic effect exerts the triphosphate metabolites, which are incorporated into DNA, and finally lead to programmed cell death. In contrast, DCF does not need to be phosphorylated and results in an increase of plasma deoxyadenosine (dAdo) levels and intracellular deoxyadenosine triphosphate (dATP). Nelarabine is an arabinosylguanine (ara-G) prodrug, which after conversion to ara-G is phosphorylated to ara-G triphosphate (ara-GTP). Accumulation of ara-GTP finally leads to apoptosis. Forodesine is a purine nucleoside phosphatase (PNP) inhibitor which blocks intracellular deoxyguanine (dGuo) cleaving to guanine (Guo), but instead converts it to deoxyguanosine triphosphate (dGTP), and similarly to other PNA resulting in apoptosis. 8-chloroadenosine (8-Cl-Ado) is a ribonucleoside analog. The mechanism of its action is quite different from other PNA and remains poorly understood. However, it is known that the drug inhibits RNA synthesis, but not DNA. These agents have significant cytotoxic activity against lymphoid and myeloid malignant cells. Moreover, they have deleterious effects on the normal resting lymphocytes. They result in prolonged lymphocyte depletion especially in the CD4 subset of T-cells. Several clinical trials have demonstrated that PNA used alone or in combination with other cytotoxic drugs or monoclonal antibodies shows good efficacy and acceptable toxicity profile in the treatment of lymphoid malignancies. 2-CdA and DCF are drugs of choice in the treatment of hairy cell leukemia. FA and 2-CdA have significant clinical activity in low-grade non-Hodgkin's lymphoma and chronic lymphocytic leukemia. 2-CdA exhibits some activity in progressive multiple sclerosis and other autoimmune disorders. This review will summarize current knowledge concerning the mechanism of action, pharmacological properties, clinical activity and toxicity of PNA accepted for use in clinical practice as well as new agents available for clinical trials.
We investigated the serum concentrations of interleukin-6 (IL-6) and two IL-6 family of cytokines (leukaemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) as well as IL-6 soluble receptor (sIL-6R) using an enzyme-linked immunosorbent assay (ELISA) in 66 patients with rheumatoid arthritis (RA) and 24 healthy controls. We examined a possible association between the serum levels of these peptides and RA activity according to the Mallya and Mace scoring system and Ritchie's index. We also evaluated the correlation between the serum levels of IL-6, LIF, CNTF and sIL-6R and duration of the disease and calculated sIL-6R/IL-6 ratio in RA patients and in the control group. IL-6 and sIL-6R were detectable in all 66 patients with RA and 24 normal individuals. LIF was also found in the serum of all patients with RA and in 16 (66.7%) normal individuals. In contrast CNTF was measurable only in 15 (22.7%) patients with RA and 24 (33.3%) normal individuals. The highest IL-6 and sIL-6R levels were found in the patients with Stages 3 and 4 of RA activity and the lowest in the control group. In contrast there were no statistically significant differences between the LIF and CNTF levels in RA patients and normal individuals. We found positive correlation between IL-6 and sIL-6R concentrations and Ritchie's index and a lack of such correlation with LIF and CNTF. IL-6 serum level correlated positively with the disease duration, but sIL-6R, LIF and CNTF did not. Serum sIL-6R/IL-6 ratio was significantly lower in RA patients than in healthy controls. In conclusion, an increase in the serum levels of IL-6 and sIL-6R, but not LIF and CNTF concentrations, may be useful markers for RA activity.
Over the last few years, new generations of anti-CD20 monoclonal antibodies (mAbs) have been developed for potential benefits over the classical, first-generation mAb rituximab. Compared with rituximab, new mAbs have enhanced antitumor activity resulting from increased complement-dependent cytotoxicity (CDC) and/or antibody-dependent cellular cytotoxicity (ADCC) and increased Fc binding affinity for the low-affinity variants of the FcγRIIIa receptor (CD16) on immune effector cells. The second-generation mAbs, which include ofatumumab, veltuzumab, and ocrelizumab, are humanized or fully human to reduce immunogenicity, but with an unmodified Fc region. Ofatumumab is a fully human anti-CD20 IgG1 mAb in clinical development for hematological malignancies and autoimmune diseases. Ofatumumab specifically recognizes an epitope encompassing both the small and large extracellular loops of CD20 molecule, and is more effective than rituximab at CDC induction and killing target cells. Veltuzumab (IMMU-106, hA20) is a humanized anti-CD20 mAb with complementarity-determining regions similar to rituximab. This antibody has enhanced binding avidities and a stronger effect on CDC compared with rituximab. Ocrelizumab is a humanized mAb with the potential for enhanced efficacy in lymphoid malignancies compared with rituximab due to increased binding affinity for the low-affinity variants of the FcγRIIIa receptor. The third-generation mAbs are also humanized mAbs, but in addition they have an engineered Fc to increase their binding affinity for the FcγRIIIa receptor. The third-generation mAbs include AME-133v, PRO131921 and GA-101. AME-133v (LY2469298) is a type I, humanized IgG1 mAb with enhanced affinity for FcγRIIIa receptor and an enhanced ADCC activity compared with rituximab. PRO131921 is a humanized anti-CD20 mAb engineered to have improved binding to FcγRIIIa and better ADCC compared with rituximab. GA-101 (RO5072759) is a fully humanized, type II, IgG1 mAb derived from humanization of the parental B-Ly1 mouse antibody and subsequent glycoengineering using GlycoMab® technology. GA-101 was designed for enhanced ADCC and superior direct cell-killing properties, in comparison with currently available type I antibodies. TRU-015 is a small modular immunopharmaceutical (SMIP) derived from key domains of an anti-CD20 antibody. TRU-015 represents a novel biological compound that retains Fc-mediated effector functions and is smaller than mAbs. In this article we review data on new anti-CD20 mAbs that are potentially useful in the treatment of lymphoid malignancies.
The use of TKIs, especially inhibitors of Btk, Syk, and Lyn, is a promising new strategy for targeted treatment of B-cell lymphoid malignancies, autoimmune disorders and allergic diseases. However, definitive data from ongoing and future clinical trials will aid in better defining the status of TKIs in the treatment of these disorders.
We investigated the serum concentration of vascular endothelial growth factor (VEGF) and its two soluble receptors, sVEGFR-1 and sVEGFR-2, in a group of 60 patients with systemic lupus erythematosus (SLE), and 20 healthy controls, using an enzyme-linked immunosorbent assay. We examined a possible association between serum levels of these proteins and certain clinical and laboratory parameters as well as SLE activity. VEGF, sVEGFR-1 and sVEGFR-2 were detectable in all patients with SLE and in all normal individuals. The VEGF level was higher in active SLE (mean, 300.8 pg/ml) than in inactive SLE (mean, 165.9 pg/ml) (p < 0.05) or in the control group (mean, 124.7 pg/ml) (p < 0.04). The highest sVEGFR-1 concentrations were also detected in active SLE patients (mean, 42.2 pg/ml) and the lowest in inactive disease (mean, 32.0 pg/ml) (p < 0.01). In contrast, the levels of sVEGFR-2 were lower in SLE (mean, 12557.6 pg/ml) than in the control group (mean, 15025.3 pg/ml) (p < 0.05). We found a positive correlation between sVEGFR-1 concentration and the SLE activity score p = 0.375 (p < 0.004) and a negative, but statistically insignificant correlation between sVEGFR-2 and SLE activity (p = -0.190, p > 0.05). Treatment with steroids and cytotoxic agents did not influence VEGF or its soluble receptors levels. In conclusion, in SLE patients the levels of VEGF and sVEGFR-1 are higher in patients with active SLE than in inactive disease or healthy persons. In contrast, the level of sVEGFR-2 is lower in active SLE than in inactive disease. The imbalance between VEGF and its soluble receptors may be important in SLE pathogenesis.
To assess the correlation between quality of life (QoL) and satisfaction with life (SL) in SLE patients and correlate both with clinical symptoms of the disease. The study was performed in 83 patients. QoL was assessed by Short Form 36, and SL was assessed by the Satisfaction with Life Scale. Clinical manifestations presented at the time of examination were taken into consideration. SLE patients assessed their QoL and SL as rather low. Those with photosensitivity as well as neurological symptoms presented lower QoL in particular domains, while those with renal manifestation of SLE assessed their QoL as higher. Similar observations were made for SL only in relation to neurological symptoms. Moreover, our findings show that although SL is a part of QoL, both these parameters should be distinguished in order to fully assess the state of the patient.
Systemic lupus erythematosus (SLE) is a disorder with a wide range of immunological abnormalities. The results of the studies undertaken in the last decade indicated that SLE pathogenesis was mainly connected with the breakdown of the activation control of B and T cells, generating humoral or cell-mediated responses against several self-antigens of affected cells. The last studies demonstrate that the role of gammadelta T lymphocytes in autoimmune diseases can be especially important. Flow cytometry techniques were used to investigate the number and percentage of TCR gammadelta T cells and their most frequent subtypes in peripheral blood of 32 patients with SLE and 16 healthy volunteers. We also correlated TCR gammadelta cells number with the level of T CD3+, T CD4+, T CD8+, and NK (CD16) cells (cytometric measurements) and SLE activity (on the basis of clinical investigations). Our studies were preliminary attempts to evaluate the role of that minor T cell subpopulation in SLE. Absolute numbers of cells expressing gammadelta TCR in most SLE blood specimens were significantly lower than in the control group (P<0.006). However, since the level of total T cell population was also decreased in the case of SLE, the mean values of the percentage gammadelta T cells of pan T lymphocytes were almost the same in both analysed populations (7.1% vs 6.3%, respectively). In contrast to Vdelta2+ and Vgamma9+ subtypes of pan gammadelta T cells, Vdelta3+ T cells number was higher in SLE patients (20 x 10 cells/microl) than in healthy control group (2 x 2 cells/microl) (P=0.001). However, we found no differences between the numbers of pan gammadelta T lymphocytes and studied their subtypes in the patients with active and inactive disease. These cell subpopulations were doubled in the treated patients with immunosuppressive agents in comparison with untreated ones; however, data were not statistically significant. Our study indicated that Vdelta3+ subtype of gammadelta T cells seems to be involved in SLE pathogenesis; however, we accept the idea that the autoimmunity does not develop from a single abnormality, but rather from a number of different events.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers