Species like nitrate (NO 3 − ), hydrogen peroxide (H 2 O 2 ), and formaldehyde (HCHO) are ubiquitous trace compounds in snow. Photochemical reactions of these compounds in the snow can have important implications for the composition of the atmospheric boundary layer in snow-covered regions and for the interpretation of concentration profiles in snow and ice regarding the composition of the past atmosphere. Therefore, we performed laboratory experiments to investigate such reactions in artificially produced snow samples. Artificial snow samples allow to execute experiments under defined and reproducible conditions and to investigate single reactions. All reactions were carried out under comparable experimental conditions and indicated that the photolysis of H 2 O 2 and NO 3 − occurred equally fast, while the photolysis of HCHO was considerably slower. Moreover, the photolysis of HCHO was only observed if initial concentrations were much higher than found in natural snow samples. These results indicate that the H 2 O 2 and NO 3 − reactions are possibly equally important in natural snow covers regarding the formation of OH radicals, while the photolysis of HCHO is probably negligible. Nitrite (NO 2 − ) was observed as one of the products of the NO 3 − photolysis; however, it was itself photolyzed at a higher rate than NO 3 − . After a certain photolysis period (≥8 h) the NO 3 − and NO 2 − concentrations in the snow remained constant at a level of 10% of the initial nitrogen content. This is probably due to a recycling of the anions from nitrogen oxides in the gas phase of the reaction cells indicating that the chemical reactions occur in or near the surface layer of the snow crystals.
BackgroundThe terrestrial land surface in West Africa is made up of several types of savanna ecosystems differing in land use changes which modulate gas exchanges between their vegetation and the overlying atmosphere. This study compares diurnal and seasonal estimates of CO2 fluxes from three contrasting ecosystems, a grassland, a mixture of fallow and cropland, and nature reserve in the Sudanian Savanna and relate them to water availability and land use characteristics.ResultsOver the study period, and for the three study sites, low soil moisture availability, high vapour pressure deficit and low ecosystem respiration were prevalent during the dry season (November to March), but the contrary occurred during the rainy season (May to October). Carbon uptake predominantly took place in the rainy season, while net carbon efflux occurred in the dry season as well as the dry to wet and wet to dry transition periods (AM and ND) respectively. Carbon uptake decreased in the order of the nature reserve, a mixture of fallow and cropland, and grassland. Only the nature reserve ecosystem at the Nazinga Park served as a net sink of CO2, mostly by virtue of a several times larger carbon uptake and ecosystem water use efficiency during the rainy season than at the other sites. These differences were influenced by albedo, LAI, EWUE, PPFD and climatology during the period of study.ConclusionThese results suggest that land use characteristics affect plant physiological processes that lead to flux exchanges over the Sudanian Savanna ecosystems. It affects the diurnal, seasonal and annual changes in NEE and its composite signals, GPP and RE. GPP and NEE were generally related as NEE scaled with photosynthesis with higher CO2 assimilation leading to higher GPP. However, CO2 effluxes over the study period suggest that besides biomass regrowth, other processes, most likely from the soil might have also contributed to the enhancement of ecosystem respiration.
Various sectors of the country's economy – agriculture, health, energy, among others – largely depend on climate information, hence availability of quality climate data is very essential for climate‐impact studies in these sectors. In this paper, a monthly rainfall database (GMet v1.0) has been developed at a 0.5° × 0.5° spatial resolution, from 113 Ghana Meteorological Agency (GMet) gauge network distributed across the four agro‐ecological zones of Ghana, and spanning a 23‐year period (1990–2012). The datasets were first homogenized with quantile‐matching adjustments and thereafter, gridded at a spatial resolution of 0.5° × 0.5° using Minimum Surface Curvature with tensioning parameter, allowing for comprehensive spatial fields assessment on the developed dataset. Afterwards, point‐pixel validation was performed using GMet v1.0 against gauge data from stations that were earlier excluded due to large datagaps. This proved the reliability of GMet v1.0, with high and statistically significant correlations at 99% confidence level, and relatively low biases and rmse. Furthermore, GMet v1.0 was compared with GPCC and TRMM rainfall estimates, with both products found to adequately mimick GMet v1.0, with high correlations which are significant at 99% confidence level, low biases and rmse. In addition, the ratio of 90th – percentile provided fairly similar capture of extremes by both TRMM and GPCC, in relation to GMet v1.0. Finally, based on annual rainfall totals and monthly variability, k‐means cluster analysis was performed on GMet v1.0, which delineated the country into four distinct climatic zones. The developed rainfall data, when officially released, will be a useful product for climate impact and further rainfall validation studies in Ghana.
Abstract. Cannibalism, which is the act of killing and at least partial consumption of conspecifics, is ubiquitous in nature. Mathematical models have considered cannibalism in the predator primarily, and show that predator cannibalism in two species ODE models provides a strong stabilizing effect. There is strong ecological evidence that cannibalism exists among prey as well, yet this phenomenon has been much less investigated. In the current manuscript, we investigate both the ODE and spatially explicit forms of a Holling-Tanner model, with ratio dependent functional response. We show that cannibalism in the predator provides a stabilizing influence as expected. However, when cannibalism in the prey is considered, we show that it cannot stabilise the unstable interior equilibrium in the ODE case, but can destabilise the stable interior equilibrium. In the spatially explicit case, we show that in certain parameter regime, prey cannibalism can lead to pattern forming Turing dynamics, which is an impossibility without it. Lastly we consider a stochastic prey cannibalism rate, and find that it can alter both spatial patterns, as well as limit cycle dynamics.
Cannibalism is an intriguing life history trait, that has been considered primarily in the predator, in predator–prey population models. Recent experimental evidence shows that prey cannibalism can have a significant impact on predator–prey population dynamics in natural communities. Motivated by these experimental results, we investigate a ratio-dependent Holling–Tanner model, where cannibalism occurs simultaneously in both the predator and prey species. We show that depending on parameters, whilst prey or predator cannibalism acting alone leads to instability, their joint effect can actually stabilize the unstable interior equilibrium. Furthermore, in the spatially explicit model, we find that depending on parameters, prey and predator cannibalism acting jointly can cause spatial patterns to form, while not so acting individually. We discuss ecological consequences of these findings in light of food chain dynamics, invasive species control and climate change.
Satellite rainfall estimates have predominantly been used for climate impact studies due to poor rain gauge network in sub-Saharan Africa. However, there are limited microscale studies within the sub-region that have assessed the performance of these satellite products, which is the focus of the present study. This paper therefore considers validation of Tropical Rainfall Measuring Mission (TRMM) and Famine Early Warning System (FEWS) satellite estimates with rain gauge measurements over Ashanti region of Ghana. First, a consistency assessment of the two gauge data products, the Automatic Rain Gauge (ARG) and Ghana Meteorological Agency (GMet) Standard Rain Gauge (SRG) measurements, was performed. This showed a very good agreement with correlation coefficient of 0.99. Secondly, satellite rainfall products from TRMM and FEWS were validated with the two gauge measurements. Validation results showed good agreement with correlation coefficients of 0.6 and 0.7 for TRMM and FEWS with SRG, and 0.87 and 0.86 for TRMM and FEWS with ARG respectively. Probability Of Detection (POD) and Volumetric Hit Index (VHI) were found to be greater than 0.9. Volumetric Critical Success Index (VCSI) was 0.9 and 0.8 for TRMM and FEWS respectively with low False Alarm Ratio (FAR) and insignificant Volumetric Miss Index (VMI). In general, relatively low biases and RMSE values were observed. The biases were less than 1.3 and 0.8 for TRMM and FEWS-RFE respectively. These indicate high rainfall detection capabilities of both satellite products. In addition, both TRMM and FEWS were able to capture the onset, peak and cessation of the rainy season, as well as the dry spells. Although TRMM and FEWS sometimes under/overestimated rainfall, they have the potential to be used for agricultural and other hydro-climatic impact studies over the region. The Dynamic- 501Aerosol-Cloud-Chemistry Interactions in West Africa (DACCIWA) project will provide an improved spatial gauge network database over the study area to enhance future validation and other climate impact studies.
The performances of both sunshine and air temperature dependent models for the estimation of global solar radiation (GSR) over Ghana and other tropical regions were evaluated and a comparison assessment of the models was carried out using measured GSR at Owabi (6 ∘ 45 0 N, 1 ∘ 43 0 W) in the Ashanti region of Ghana. Furthermore, an empirical model which also uses sunshine hours and air temperature measurements from the study site and its environs was proposed. The results showed that all the models could predict very well the pattern of the measured monthly daily mean GSR for the entire period of the study. However, most of the selected models overestimated the measured GSR, except in April and November, where the empirical model using air temperature measurements underestimated the measured GSR. Nevertheless, a very good agreement was found between the measured radiations and the proposed models with a coefficient of determination within the range 0.88-0.96. The results revealed that the proposed models using sunshine hours and air temperature had the smallest values of MBE, MPE, and RMSE of −0.0102, 0.0585, and 0.0338 and −0.2973, 1.7075, and 0.9859, respectively.
Watersheds with rich hydrometeorological equipment are still very limited in West Africa but are essential for an improved analysis of environmental changes and their impacts in this region. This study gives an overview of a novel hydrometeorological observatory that was established for two mesoscale watersheds in the Sudan Savanna of Southern Burkina Faso and Northern Ghana as part of the West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL) program. The study area is characterized by severe land cover changes due to a strongly increasing demand of agricultural land. The observatory is designed for long-term measurements of >30 hydrometeorological variables in subhourly resolution and further variables such as CO 2 . This information is complemented by long-term daily measurements from national meteorological and hydrological networks, among several other datasets recently established for this region. A unique component of the observatory is a micrometeorological field experiment using eddy covariance stations implemented at three contrasting sites (near-natural, cropland, and degraded grassland) to assess the impact of land cover changes on water, energy, and CO 2 fluxes. The datasets of the observatory are needed by many modeling and field studies conducted in this region and are made available via the WASCAL database. Moreover, the observatory forms an excellent platform for future investigations and can be used as observational foundation for environmental observatories for an improved assessment of environmental changes and their socioeconomic impacts for the savanna regions of West Africa. drologically enhanced version of the Weather and Research Forecasting Model.West Africa is a region for which high-quality hydrometeorological measurements are very scarce (Jones et al., 2015). However, such information is needed for a better scientific understanding of hydrological processes and their interactions with the atmosphere and the biosphere. Observational data form the basis for the development of reliable modeling approaches for climate change analyses, as well as for determining the impact of land cover changes in hydrology and other disciplines. Many regions in West Africa are characterized by significant land cover changes due to a widespread conversion of savanna and other ecosystems into agricultural land (Ouedraogo et al., 2009;Knauer et al., 2017), which is expected to continue in the future. Land cover change analysis is the basis for the development of sustainable land management practices that strengthen the resilience of socioecological systems against climate extremes and enhance food security. Moreover, substantial biosphere-precipitation feedbacks have been detected for the West African Core Ideas • A new hydrometeorological observatory was established for the Sudan Savanna. • More than 30 hydrometeorological variables in subhourly resolution are provided. • Water, energy, and CO 2 fluxes are monitored along a land use change gradient. • The data form the basis for...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers