Abstract-In this work, we study classical differential geometry of the curves according to type-2 Bishop trihedra. First, we present some characterizations of a general helix, a helix, special cases and spherical curves. Thereafter, we investigate position vector of a regular curve by a system of ordinary differential equations whose solution gives the components of the position vector with respect to type-2 Bishop frame. Next we prove that the first vector field of the type-2 Bishop frame of a regular curve satisfies a vector differential equation of third order. Solutions of the mentioned system and vector differential equation have not been found. Therefore we present some special characterizations introducing special planes of three dimensional Euclidean space.
In this work, we investigate relationships between Darboux and type-2 Bishop frames in Euclidean space. Then, we obtain the geodesic curvature of the spherical image curve of the Darboux vector of the type-2 Bishop frame. Also, we give transition matrix between the Darboux and type-2 Bishop frames of the type-2 Bishop frames of the spherical images of the edges [Formula: see text] and [Formula: see text]. Finally, we express some interesting relations and illustrate of the examples by the aid Maple programe.
The general idea in this paper is to study curves of the parametric equations where the parameter varies in a so-called time scale, which may be an arbitrary closed subset of the set of all real numbers. We introduce the directional derivative according to the vector fields.
In this work, we study Differential Geometry of the curves on a regular surface in Euclidean space R 3 by using parameter curves which are not perpendicular to each other. The aim of this study is to investigate the formulas between the Darboux Vectors of the curve (c), the parameter curve (c 1) and the parameter curve (c 2) which are not intersect perpendicularly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.