Abstract. End-to-end communication over the network layer (or data link in overlay networks) is one of the most important communication tasks in every communication network, including legacy communication networks as well as mobile ad hoc networks, peer-to-peer networks and mash networks. We study end-to-end algorithms that exchange packets to deliver (high level) messages in FIFO order without omissions or duplications. We present a self-stabilizing end-to-end algorithm that can be applied to networks of bounded capacity that omit, duplicate and reorder packets. The algorithm is network topology independent, and hence suitable for always changing dynamic networks with any churn rate.
Citation for the published paper: Dolev, S. ; Georgiou, C. ; Marcoullis, I. et al. (2015) Abstract. Virtual synchrony (VS) is an important abstraction that is proven to be extremely useful when implemented over asynchronous, typically large, message-passing distributed systems. Fault tolerant design is critical for the success of such implementations since large distributed systems can be highly available as long as they do not depend on the full operational status of every system participant. Self-stabilizing systems can tolerate transient faults that drive the system to an arbitrary unpredictable configuration. Such systems automatically regain consistency from any such configuration, and then produce the desired system behavior ensuring it for practically infinite number of successive steps, e.g., 2 64 steps. We present a new multi-purpose self-stabilizing counter algorithm establishing an efficient practically unbounded counter, that can directly yield a self-stabilizing Multiple-Writer Multiple-Reader (MWMR) register emulation. We use our counter algorithm, together with a selfstabilizing group membership and a self-stabilizing multicast service to devise the first practically stabilizing VS algorithm and a self-stabilizing VS-based emulation of state machine replication (SMR). As we base the SMR implementation on VS, rather than consensus, the system progresses in more extreme asynchronous settings in relation to consensusbased SMR.
Time division multiple access (TDMA) is a method for sharing communication media. In wireless communications, TDMA algorithms often divide the radio time into timeslots of uniform size, ξ, and then combine them into frames of uniform size, τ . We consider TDMA algorithms that allocate at least one timeslot in every frame to every node. Given a maximal node degree, δ, and no access to external references for collision detection, time or position, we consider the problem of collision-free self-stabilizing TDMA algorithms that use constant frame size.We demonstrate that this problem has no solution when the frame size is τ < max{2δ, χ2}, where χ2 is the chromatic number for distance-2 vertex coloring. As a complement to this lower bound, we focus on proving the existence of collision-free self-stabilizing TDMA algorithms that use constant frame size of τ . We consider basic settings (no hardware support for collision detection and no prior clock synchronization), and the collision of concurrent transmissions from transmitters that are at most two hops apart. In the context of self-stabilizing systems that have no external reference, we are the first to study this problem (to the best of our knowledge), and use simulations to show convergence even with computation time uncertainties.
Abstract-Ultra-wide bandwidth (UWB) systems allow for accurate positioning in environments where global navigation satellite systems may fail, especially when complemented with cooperative processing. While cooperative UWB has led to centimeter-level accuracies, the communication overhead is often neglected. We quantify how accuracy and delay trade off in a wide variety of operation conditions. We also derive the asymptotic scaling of accuracy and delay, indicating that in some conditions, standard cooperation offers the worst possible tradeoff. Both avenues lead to the same conclusion: indiscriminately targeting increased accuracy incurs a significant delay penalty. Simple countermeasures can be taken to reduce this penalty and obtain a meaningful accuracy/delay trade-off.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.