An
efficient and an easily scalable photocatalyst with CdS nanoparticles
placed on the outer surface and inside halloysite clay nanotubes with
cadmium sulfide content of ca. 3 wt % was developed. The CdS/halloysite
core–shell tubule nanocomposites showed a superior catalytic
activity and a high stability in the release of hydrogen under visible
radiation without cocatalysts or noble metal doping. The specific
activity was of 20 mmol of hydrogen per hour per gram of CdS. The
suggested approach opens the way to an inexpensive production of highly
efficient mesoporous catalyst based on a natural, abundantly available
clay support.
Air disinfection from bacteria and viruses by means of photocatalytic oxidation is investigated with microorganisms loaded over photocatalysts' films from aerosols. Deposition method and equipment have been developed to load Mycobacterium smegmatis , Bacillus thuringiensis , vaccinia virus, and influenza A (H3N2) virus on slides with undoped TiO(2) and platinized sulfated TiO(2) (Pt/TiO(2)). Inactivation dynamics was measured under UVA irradiation and in the dark. About 90% inactivation is reached in 30 min irradiation on TiO(2) and from 90 to 99.8% on Pt/TiO(2). The first-order inactivation rate coefficient ranged from 0.18 to 0.03 min(-1), over Pt/TiO(2) being higher than on TiO(2) for all microorganisms except Bacillus thuringiensis. The photocatalytic mineralization of Bacillus thuringiensis was performed on TiO(2) and Pt/TiO(2) with different photocatalyst and microorganism loadings. Completeness of mineralization depended on the TiO(2) to bacteria mass ratio. The rate of the photocatalytic carbon dioxide production grows with both the cell mass increase and the photocatalyst mass increase. Pt/TiO(2) showed increased rate of mineralization as well as of the inactivation likely due to a better charge carrier separation in the doped semiconductor photocatalyst. The results demonstrate that photocatalytic filters with deposited TiO(2) or Pt/TiO(2) are able to inactivate aerosol microorganisms and completely decompose them into inorganic products and Pt/TiO(2) provides higher disinfection and mineralization rates.
Registro de acceso restringido Este recurso no está disponible en acceso abierto por política de la editorial. No obstante, se puede acceder al texto completo desde la Universitat Jaume I o si el usuario cuenta con suscripción. Registre d'accés restringit Aquest recurs no està disponible en accés obert per política de l'editorial. No obstant això, es pot accedir al text complet des de la Universitat Jaume I o si l'usuari compta amb subscripció. Restricted access item This item isn't open access because of publisher's policy. The full--text version is only available from Jaume I University or if the user has a running suscription to the publisher's contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.