please see the response in the supplement file Please also note the supplement to this comment: http://www.atmos-chem-phys-discuss.net/acp-2016-554/acp-2016-554-AC1-supplement.pdf Interactive comment on Atmos. Chem. Phys. Discuss.,
Abstract. The Amazonian rainforest is a large tropical ecosystem, which is one of the last pristine continental terrains. This ecosystem is ideally located for the study of diel and seasonal behaviour of biogenic volatile organic compounds (BVOCs) in the absence of local human interference. In this study, we report the first atmospheric BVOC measurements at the Amazonian Tall Tower Observatory (ATTO) site, located in central Amazonia. A quadrupole proton-transfer-reaction mass spectrometer (PTR-MS), with seven ambient air inlets, positioned from near ground to about 80 m (0.05, 0.5, 4, 24, 38, 53 and 79 m above the forest floor), was deployed for BVOC monitoring. We report diel and seasonal (February-March 2013 as wet season and September 2013 as dry season) ambient mixing ratios for isoprene, monoterpenes, isoprene oxidation products, acetaldehyde, acetone, methyl ethyl ketone (MEK), methanol and acetonitrile. Clear diel and seasonal patterns were observed for all compounds. In general, lower mixing ratios were observed during night, while maximum mixing ratios were observed during the wet season (February-March 2013), with the peak in solar irradiation at 12:00 LT (local time) and during the dry season (September 2013) with the peak in temperature at 16:00 LT. Isoprene and monoterpene mixing ratios were the highest within the canopy with a median of 7.6 and 1 ppb, respectively (interquartile range (IQR) of 6.1 and 0.38 ppb) during the dry season (at 24 m, from 12:00 to 15:00 LT). The increased contribution of oxygenated volatile organic compounds (OVOCs) above the canopy indicated a transition from dominating forest emissions during the wet season (when mixing ratios were higher than within the canopy), to a blend of biogenic emission, photochemical production and advection during the dry season when mixing ratios were higher above the canopy. Our observations suggest strong seasonal interactions between environmental (insolation, temperature) and biological (phenology) drivers of leaf BVOC emissions and atmospheric chemistry. Considerable differences in the magnitude of BVOC mixing ratios, as compared to other reports of Amazonian BVOC, demonstrate the need for long-term observations at different sites and more standardized measurement procedures, in order to better characterize the natural exchange of BVOCs between the Amazonian rainforest and the atmosphere.
The Amazon rainforest is the world’s largest source of reactive volatile isoprenoids to the atmosphere. It is generally assumed that these emissions are products of photosynthetically driven secondary metabolism and released from the rainforest canopy from where they influence the oxidative capacity of the atmosphere. However, recent measurements indicate that further sources of volatiles are present. Here we show that soil microorganisms are a strong, unaccounted source of highly reactive and previously unreported sesquiterpenes (C15H24; SQT). The emission rate and chemical speciation of soil SQTs were determined as a function of soil moisture, oxygen, and rRNA transcript abundance in the laboratory. Based on these results, a model was developed to predict soil–atmosphere SQT fluxes. It was found SQT emissions from a Terra Firme soil in the dry season were in comparable magnitude to current global model canopy emissions, establishing an important ecological connection between soil microbes and atmospherically relevant SQTs.
Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these emissions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labels and advanced data mining methods revealed that specific film events, namely “suspense” or “comedy” caused audiences to change their emission of specific chemicals. These event-type synchronous, broadcasted human chemosignals open the possibility for objective and non-invasive assessment of a human group response to stimuli by continuous measurement of chemicals in air. Such methods can be applied to research fields such as psychology and biology, and be valuable to industries such as film making and advertising.
Abstract. Sesquiterpenes (C 15 H 24 ) are semi-volatile organic compounds emitted by vegetation and are of interest in atmospheric research because they influence the oxidative capacity of the atmosphere and contribute to the formation of secondary organic aerosols. However, little is known about their emission pattern and no established parameterisation is available for global emission models. The aim of this study is to investigate a Central European spruce forest and its emission response to meteorological and environmental parameters, looking for a parameterisation that incorporates heat and oxidative stress as the main driving forces of the induced emissions. Therefore, a healthy ca. 80 yr old Norway spruce (Picea abies) tree was selected and a dynamical vegetation enclosure technique was applied from April to November 2011. The emissions clearly responded to temperature changes with small variations in the β-factor along the year (β spring = 0.09 ± 0.01, β summer = 0.12± 0.02, β autumn = 0.11 ± 0.02). However, daily calculated values revealed a vast amount of variability in temperature dependencies ((0.02 ± 0.002) < β < (0.27 ± 0.04)) with no distinct seasonality.By separating the complete dataset in 10 different ozone regimes, we found that in moderately or less polluted atmospheric conditions the main driving force of sesquiterpene emissions is the temperature, but when ambient ozone mixing ratios exceed a critical threshold of (36.6 ± 3.9) ppb v , the emissions become primarily correlated with ozone. Considering the complete dataset, cross correlation analysis resulted in highest correlation with ambient ozone mixing ratios (CC O 3 = 0.63 ± 0.01; CC T = 0.47 ± 0.02 at t = 0 h for temperature) with a time shift 2-4 h prior to the emissions. An only temperature dependent algorithm was found to substantially underestimate the induced emissions (20 % of the measured; R 2 = 0.31). However, the addition of an ozone dependent term improved substantially the fitting between measured and modelled emissions (81 % of the modelled emissions could be explained by the measurements; R 2 = 0.63), providing confidence about the reliability of the suggested parameterisation for the spruce forest site investigated.
Air pollution is growing fastest in monsoon-affected South Asia. During the dry winter monsoon, the fumes disperse toward the Indian Ocean, creating a vast pollution haze, but their fate during the wet summer monsoon has been unclear. We performed atmospheric chemistry measurements by aircraft in the Oxidation Mechanism Observations campaign, sampling the summer monsoon outflow in the upper troposphere between the Mediterranean and the Indian Ocean. The measurements, supported by model calculations, show that the monsoon sustains a remarkably efficient cleansing mechanism by which contaminants are rapidly oxidized and deposited to Earth's surface. However, some pollutants are lofted above the monsoon clouds and chemically processed in a reactive reservoir before being redistributed globally, including to the stratosphere.
Abstract. The Arabian Peninsula is characterized by high and increasing levels of photochemical air pollution. Strong solar irradiation, high temperatures and large anthropogenic emissions of reactive trace gases result in intense photochemical activity, especially during the summer months. However, air chemistry measurements in the region are scarce. In order to assess regional pollution sources and oxidation rates, the first ship-based direct measurements of total OH reactivity were performed in summer 2017 from a vessel traveling around the peninsula during the AQABA (Air Quality and Climate Change in the Arabian Basin) campaign. Total OH reactivity is the total loss frequency of OH radicals due to all reactive compounds present in air and defines the local lifetime of OH, the most important oxidant in the troposphere. During the AQABA campaign, the total OH reactivity ranged from below the detection limit (5.4 s−1) over the northwestern Indian Ocean (Arabian Sea) to a maximum of 32.8±9.6 s−1 over the Arabian Gulf (also known as Persian Gulf) when air originated from large petroleum extraction/processing facilities in Iraq and Kuwait. In the polluted marine regions, OH reactivity was broadly comparable to highly populated urban centers in intensity and composition. The permanent influence of heavy maritime traffic over the seaways of the Red Sea, Gulf of Aden and Gulf of Oman resulted in median OH sinks of 7.9–8.5 s−1. Due to the rapid oxidation of direct volatile organic compound (VOC) emissions, oxygenated volatile organic compounds (OVOCs) were observed to be the main contributor to OH reactivity around the Arabian Peninsula (9 %–35 % by region). Over the Arabian Gulf, alkanes and alkenes from the petroleum extraction and processing industry were an important OH sink with ∼9 % of total OH reactivity each, whereas NOx and aromatic hydrocarbons (∼10 % each) played a larger role in the Suez Canal, which is influenced more by ship traffic and urban emissions. We investigated the number and identity of chemical species necessary to explain the total OH sink. Taking into account ∼100 individually measured chemical species, the observed total OH reactivity can typically be accounted for within the measurement uncertainty (50 %), with 10 dominant trace gases accounting for 20 %–39 % of regional total OH reactivity. The chemical regimes causing the intense ozone pollution around the Arabian Peninsula were investigated using total OH reactivity measurements. Ozone vs. OH reactivity relationships were found to be a useful tool for differentiating between ozone titration in fresh emissions and photochemically aged air masses. Our results show that the ratio of NOx- and VOC-attributed OH reactivity was favorable for ozone formation almost all around the Arabian Peninsula, which is due to NOx and VOCs from ship exhausts and, often, oil/gas production. Therewith, total OH reactivity measurements help to elucidate the chemical processes underlying the extreme tropospheric ozone concentrations observed in summer over the Arabian Basin.
Abstract. Atmospheric non-methane hydrocarbons (NMHCs) have been extensively studied around the globe due to their importance to atmospheric chemistry and their utility in emission source and chemical sink identification. This study reports on shipborne NMHC measurements made around the Arabian Peninsula during the AQABA (Air Quality and climate change in the Arabian BAsin) ship campaign. The ship traversed the Mediterranean Sea, the Suez Canal, the Red Sea, the northern Indian Ocean, and the Arabian Gulf, before returning by the same route. The Middle East is one of the largest producers of oil and gas (O&G), yet it is among the least studied. Atmospheric mixing ratios of C2–C8 hydrocarbons ranged from a few ppt in unpolluted regions (Arabian Sea) to several ppb over the Suez Canal and Arabian Gulf (also known as the Persian Gulf), where a maximum of 166.5 ppb of alkanes was detected. The ratio between i-pentane and n-pentane was found to be 0.93±0.03 ppb ppb−1 over the Arabian Gulf, which is indicative of widespread O&G activities, while it was 1.71±0.06 ppb ppb−1 in the Suez Canal, which is a characteristic signature of ship emissions. We provide evidence that international shipping contributes to ambient C3–C8 hydrocarbon concentrations but not to ethane, which was not detected in marine traffic exhausts. NMHC relationships with propane differentiated between alkane-rich associated gas and methane-rich non-associated gas through a characteristic enrichment of ethane over propane atmospheric mixing ratios. Utilizing the variability–lifetime relationship, we show that atmospheric chemistry governs the variability of the alkanes only weakly in the source-dominated areas of the Arabian Gulf (bAG=0.16) and along the northern part of the Red Sea (bRSN=0.22), but stronger dependencies are found in unpolluted regions such as the Gulf of Aden (bGA=0.58) and the Mediterranean Sea (bMS=0.48). NMHC oxidative pair analysis indicated that OH chemistry dominates the oxidation of hydrocarbons in the region, but along the Red Sea and the Arabian Gulf the NMHC ratios occasionally provided evidence of chlorine radical chemistry. These results demonstrate the utility of NMHCs as source/sink identification tracers and provide an overview of NMHCs around the Arabian Peninsula.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers