We show how LTL model checking can be reduced to CTL model checking with fairness constraints. Using this reduction, we also describe how to construct a symbolic LTL model checker that appears to be quite efficient in practice. In particular, we show how the SMV model checking system developed by McMillan [16] can be extended to permit LTL specifications. The results that we have obtained are quite surprising. For the examples we considered, the LTL model checker required at most twice as much time and space as the CTL model checker. Although additional examples still need to be tried, it appears that efficient LTL model checking is possible when the specifications are not excessively complicated.
We give an efficient procedure for verifying that a finite-state concurrent system meets a specification expressed in a (propositional, branching-time) temporal logic. Our algorithm has complexity linear in both the size of the specification and the size of the global state graph for the concurrent system. We also show how this approach can be adapted to handle fairness. We argue that our technique can provide a practical alternative to manual proof construction or use of a mechanical theorem prover for verifying many finite-state concurrent systems. Experimental results show that state machines with several hundred states can be checked in a matter of seconds.
Abstract. Symbolic Model Checking [3,14] has proven to be a powerful technique for the verification of reactive systems. BDDs [2] have traditionally been used as a symbolic representation of the system. In this paper we show how boolean decision procedures, like Stålmarck's Method [16] or the Davis & Putnam Procedure [7], can replace BDDs. This new technique avoids the space blow up of BDDs, generates counterexamples much faster, and sometimes speeds up the verification. In addition, it produces counterexamples of minimal length. We introduce a bounded model checking procedure for LTL which reduces model checking to propositional satisfiability. We show that bounded LTL model checking can be done without a tableau construction. We have implemented a model checker BMC, based on bounded model checking, and preliminary results are presented.
This paper describes version 2 of the NuSMV tool. NuSMV is a symbolic model\ud
checker originated from the reengineering, reimplementation and extension of\ud
SMV, the original BDD-based model checker developed at CMU. The Nu-\ud
SMV project aims at the development of a state-of-the-art symbolic model\ud
checker, designed to be applicable in technology transfer projects: it is a well\ud
structured, open, flexible and documented platform for model checking, and is\ud
robust and close to industrial systems standards
Abstract. We present a tool for the formal verification of ANSI-C programs using Bounded Model Checking (BMC). The emphasis is on usability: the tool supports almost all ANSI-C language features, including pointer constructs, dynamic memory allocation, recursion, and the float and double data types. From the perspective of the user, the verification is highly automated: the only input required is the BMC bound. The tool is integrated into a graphical user interface. This is essential for presenting long counterexample traces: the tool allows stepping through the trace in the same way a debugger allows stepping through a program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.