3‐Chlorobiphenyl‐degrading bacteria were obtained from the mating between Pseudomonas putida strain BN10 and Pseudomonas sp. strain B13. Strains such as BN210 resulted from the transfer of the genes coding the enzyme sequence for the degradation of chlorocatechols from B13 into BN10, whereas B13 derivatives such as B131 have acquired the biphenyl degradation sequence from BN10. During growth of the hybrid strains on 3‐chlorobiphenyl 90% chloride was released. Activities of phenylcatechol 2,3‐dioxygenase, benzoate dioxygenase, catechol 1,2‐dioxygenase, chloromuconate cyloisomerase and 4‐carboxymethyl‐enebut‐2‐en‐4‐olide hydrolase were found in 3‐chlorobiphenyl‐grown cells. The hybrid strains were found to convert some congeners of the Aroclor 1221 mixture such as mono‐ and dichloro‐substituted biphenyls.
Pseudomonas sp. strain RHO1 able to use chloro- and 1,4-dichlorobenzene as growth substrates was tested towards sensitivity against chlorobenzene. Concentrations of chlorobenzene higher than 3.5 mM were found to be toxic to cells independent of pregrowth with chlorobenzene or nutrient broth. Below this concentration, sensitivity towards chlorobenzene depended on the precultivation of the cells, i.e. type of growth substrate (chlorobenzene or nutrient broth) and the concentration of chlorobenzene as the growth substrate. Cells grown in continuous culture were especially sensitive with a threshold concentration of 2.5 mM chlorobenzene. In addition to chlorobenzene, metabolites also seem to function as toxic compounds. 2-Chlorophenol and 3-chlorocatechol were isolated from cell extracts. Cleavage of 3-chlorocatechol by catechol 1,2-dioxygenase seems to be the critical step in the metabolism of chlorobenzene.
Pseudomonas putida GJ31 harbors a degradative pathway for chlorobenzene via meta-cleavage of 3-chlorocatechol. Pseudomonads using this route for chlorobenzene degradation, which was previously thought to be generally unproductive, were isolated from various contaminated environments of distant locations. The new isolates, Pseudomonas fluorescens SK1 (DSM16274), Pseudomonas veronii 16-6A (DSM16273), Pseudomonas sp. strain MG61 (DSM16272), harbor a chlorocatechol 2,3-dioxygenase (CbzE). The cbzE-like genes were cloned, sequenced, and expressed from the isolates and a mixed culture. The chlorocatechol 2,3-dioxygenases shared 97% identical amino acids with CbzE from strain GJ31, forming a distinct family of catechol 2,3-dioxygenases. The chlorocatechol 2,3-dioxygenase, purified from chlorobenzene-grown cells of strain SK1, showed an identical N-terminal sequence with the amino acid sequence deduced from cloned cbzE. In all investigated chlorobenzene-degrading strains, cbzT-like genes encoding ferredoxins are located upstream of cbzE. The sequence data indicate that the ferredoxins are identical (one amino acid difference in CbzT of strain 16-6A compared to the others). In addition, the structure of the operon downstream of cbzE is identical in strains GJ31, 16-6A, and SK1 with genes cbzX (unknown function) and the known part of cbzG (2-hydroxymuconic semialdehyde dehydrogenase) and share 100% nucleotide sequence identity with the entire downstream region. The current study suggests that meta-cleavage of 3-chlorocatechol is not an atypical pathway for the degradation of chlorobenzene.
Pseudomonas putida GJ31 has been reported to grow on chlorobenzene using a meta-cleavage pathway with chlorocatechol 2,3-dioxygenase (CbzE) as a key enzyme. The CbzE-encoding gene was found to be localized on the 180 kb plasmid pKW1 in a cbzTEXGS cluster, which is flanked by transposases and encodes only a partial (chloro)catechol meta-cleavage pathway comprising ferredoxin reductase, chlorocatechol 2,3-dioxygenase, an unknown protein, 2-hydroxymuconic semialdehyde dehydrogenase and glutathione S-transferase. Downstream of cbzTEXGS are located cbzJ, encoding a novel type of 2-hydroxypent-2,4-dienoate hydratase, and a transposon region highly similar to Tn5501. Upstream of cbzTEXGS, traNEOFG transfer genes were found. The search for gene clusters possibly completing the (chloro)catechol metabolic pathway of GJ31 revealed the presence of two additional catabolic gene clusters on pKW1. The mhpRBCDFETP cluster encodes enzymes for the dissimilation of 2,3-dihydroxyphenylpropionate in a novel arrangement characterized by the absence of a gene encoding 3-(3-hydroxyphenyl)propionate monooxygenase and the presence of a GntR-type regulator, whereas the nahINLOMKJ cluster encodes part of the naphthalene metabolic pathway. Transcription studies supported their possible involvement in chlorobenzene degradation. The upper pathway cluster, comprising genes encoding a chlorobenzene dioxygenase and a chlorobenzene dihydrodiol dehydrogenase, was localized on the chromosome. A high level of transcription in response to chlorobenzene revealed it to be crucial for chlorobenzene degradation. The chlorobenzene degradation pathway in strain GJ31 is thus a mosaic encoded by four gene clusters.
The dustiness of 12 test powders was determined using three different measuring methods. One of the methods, the continuous drop method, is a reference test method according to the EN 15051 'Workplace atmospheres--Measurement of the dustiness of bulk materials--Requirements and reference test methods'. A test of equivalence between the reference test method and the other two methods, the modified Heubach Dustmeter, a rotating drum method and the Palas Dustview, a single-drop method, has been carried out as provided in Annex D of the European standard. No equivalence was found between any of the test methods. An applied best-case scenario yielded a slightly better outcome, but the results lead to the conclusion that it is impossible to generate viable values using the test of equivalence provided in the standard. This outcome was expected and is due to the different handling procedures applied-which, however, relates to the reality of the variety of material-handling procedures in the workplace.
The handling of powders, such as storing, conveying, filling, mixing etc. leads to airborne dust in the ambient air. These procedures almost represent a fault or a hazard, hence the capability of a powder to liberate dust is also a feature of quality. The amount of released dust of disperse particle systems depends on primary particle properties, such as particle size distribution, and also on the method and intensity of stressing. Also, quantitative description of dustiness always depends on the measuring method.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.