The prospects of using a natural material – ferromanganese nodules (FMN) from<br />the Gulf of Finland – as the SO2 adsorbent are discussed. The starting material was<br />studied as pellets and powder using X-ray fluorescence spectroscopy, XRD, BET,<br />and mechanical strength analysis; dependences of physicochemical parameters of<br />the material on heat treatment at 100-1000 ºC were found. FMN samples were tested in the process of SO2 sorption. The sorptive capacity of FMN samples for SO2 was found to increase with humidity of adsorbents; FMN samples with a humidity above 40% were shown to be promising for the removal of sulfur dioxide from gases.
Coal industry methane is a fossil raw material that can serve as an energy carrier for the production of heat and electricity, as well as a raw material for obtaining valuable products for the chemical industry. To ensure the safety of coal mining, rational environmental management and curbing global warming, it is important to develop and improve methods for capturing and utilizing methane from the coal industry. This review looks at the scientific basis and promising technologies for hydrogen production from coal industry methane and coal production. Technologies for catalytic conversion of all types of coal industry methane (Ventilation Air Methane – VAM, Coal Mine Methane – CMM, Abandoned Mine Methane – AMM, Coal-Bed Methane – CBM), differing in methane concentration and methane-to-air ratio, are discussed. The results of studies on the creation of a number of efficient catalysts for hydrogen production are presented. The great potential of hybrid methods of processing natural coal and coal industry methane has been demonstrated.
Results of the investigation of polycyclic aromatic hydrocarbons (PAHs) content in fine coal powders prepared according to a special procedure within size classes (-0.2+0.1) mm, (-0.1+0.063) mm, (-0.063+0.04) mm, (-0.04) mm for ten different coal ranks (B, D, G, Zh, K, KS, OS, SS, T, A) from the Kuznetsk coal basin are presented. The qualitative and quantitative PAHs content in coal samples was determined by means of GC-MS using a SCION SQ SELECT instrument (Bruker, USA). The maximal Σ14 PAHs content is observed for A rank coal (224.3 mg/kg), KS (201.9 mg/kg) and T (197.8 mg/ kg), and the minimal Σ14 PAHs content is detected for B rank (2.2 mg/kg) for the size fraction (-0.04) mm. The concentration of benz(a)pyrene, which is a strong carcinogen, is within the range of 0.026‒103.1 mg/kg in coal samples under investigation. At the same time, the fraction of benz(a)pyrene is less than 45% of the total amount of detected PAHs, and it is less stable to the effect of the environment than other PAHs. The most stable component in PAHs series is phenanthrene, which was detected in the series of studied coal samples of different fractions (0.061‒43.7 mg/kg). Phenanthrene may be considered a PAHs of priority, and it may be used as a reference compound to evaluate the influence of coal mining and processing on the environment. The group composition of hydrocarbons in coal extracts was determined by means of two-dimensional gas chromatography with flame ionization detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.