To support the increasing spread of Electric Vehicles (EVs), Charging Stations (CSs) are being installed worldwide. The new generation of CSs employs the Vehicle-To-Grid (V2G) paradigm by implementing novel standards such as the ISO 15118. This standard enables highlevel communication between the vehicle and the charging column, helps manage the charge smartly, and simplifies the payment phase. This novel charging paradigm, which connects the Smart Grid to external networks (e.g., EVs and CSs), has not been thoroughly examined yet. Therefore, it may lead to dangerous vulnerability surfaces and new research challenges.In this paper, we present EVExchange, the first attack to steal energy during a charging session in a V2G communication: i.e., charging the attacker's car while letting the victim pay for it. Furthermore, if reverse charging flow is enabled, the attacker can even sell the energy available on the victim's car! Thus, getting the economic profit of this selling, and leaving the victim with a completely discharged battery. We developed a virtual and a physical testbed in which we validate the attack and prove its effectiveness in stealing the energy. To prevent the attack, we propose a lightweight modification of the ISO 15118 protocol to include a distance bounding algorithm. Finally, we validated the countermeasure on our testbeds. Our results show that the proposed countermeasure can identify all the relay attack attempts while being transparent to the user.
EVs (Electric Vehicles) represent a green alternative to traditional fuel-powered vehicles. To enforce their widespread use, both the technical development and the security of users shall be guaranteed. Privacy of users represents one of the possible threats impairing EVs adoption. In particular, recent works showed the feasibility of identifying EVs based on the current exchanged during the charging phase. In fact, while the resource negotiation phase runs over secure communication protocols, the signal exchanged during the actual charging contains features peculiar to each EV. A suitable feature extractor can hence associate such features to each EV, in what is commonly known as profiling.In this paper, we propose EVScout2.0, an extended and improved version of our previously proposed framework to profile EVs based on their charging behavior. By exploiting the current and pilot signals exchanged during the charging phase, our scheme is able to extract features peculiar for each EV, allowing hence for their profiling. We implemented and tested EVScout2.0 over a set of real-world measurements considering over 7500 charging sessions from a total of 137 EVs. In particular, numerical results show the superiority of EVScout2.0 with respect to the previous version. EVScout2.0 can profile EVs, attaining a maximum of 0.88 recall and 0.88 precision. To the best of the authors' knowledge, these results set a new benchmark for upcoming privacy research for large datasets of EVs.
Electric Vehicles (EVs) represent a green alternative to traditional fuel-powered vehicles. To enforce their widespread use, both the technical development and the security of users shall be guaranteed. Users’ privacy represents a possible threat that impairs the adoption of EVs. In particular, recent works showed the feasibility of identifying EVs based on the current exchanged during the charging phase. In fact, while the resource negotiation phase runs over secure communication protocols, the signal exchanged during the actual charging contains features peculiar to each EV. In what is commonly known as profiling, a suitable feature extractor can associate such features to each EV. In this paper, we propose EVScout2.0 , an extended and improved version of our previously proposed framework to profile EVs based on their charging behavior. By exploiting the current and pilot signals exchanged during the charging phase, our scheme can extract features peculiar for each EV, hence allowing their profiling. We implemented and tested EVScout2.0 over a set of real-world measurements considering over 7500 charging sessions from a total of 137 EVs. In particular, numerical results show the superiority of EVScout2.0 with respect to the previous version. EVScout2.0 can profile EVs, attaining a maximum of 0.88 for both recall and precision scores in the case of a balanced dataset. To the best of the authors’ knowledge, these results set a new benchmark for upcoming privacy research for large datasets of EVs.
To support the increasing spread of Electric Vehicles (EVs), Charging Stations (CSs) are being installed worldwide. The new generation of CSs employs the Vehicle-To-Grid (V2G) paradigm by implementing novel standards such as the ISO 15118. This standard enables high-level communication between the vehicle and the charging column, helps manage the charge smartly, and simplifies the payment phase. This novel charging paradigm, which connects the Smart Grid to external networks (e.g., EVs and CSs), has not been thoroughly examined yet. Therefore, it may lead to dangerous vulnerability surfaces and new research challenges.In this paper, we present EVExchange, the first attack to steal energy during a charging session in a V2G communication: i.e., charging the attacker’s car while letting the victim pay for it. Furthermore, if reverse charging flow is enabled, the attacker can even sell the energy available on the victim’s car! Thus, getting the economic profit of this selling, and leaving the victim with a completely discharged battery. We developed a virtual and a physical testbed in which we validate the attack and prove its effectiveness in stealing the energy. To prevent the attack, we propose a lightweight modification of the ISO 15118 protocol to include a distance bounding algorithm. Finally, we validated the countermeasure on our testbeds. Our results show that the proposed countermeasure can identify all the relay attack attempts while being transparent to the user.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers