Summary The Cancer Genome Atlas (TCGA) project has analyzed mRNA expression, miRNA expression, promoter methylation, and DNA copy number in 489 high-grade serous ovarian adenocarcinomas (HGS-OvCa) and the DNA sequences of exons from coding genes in 316 of these tumors. These results show that HGS-OvCa is characterized by TP53 mutations in almost all tumors (96%); low prevalence but statistically recurrent somatic mutations in 9 additional genes including NF1, BRCA1, BRCA2, RB1, and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three miRNA subtypes, four promoter methylation subtypes, a transcriptional signature associated with survival duration and shed new light on the impact on survival of tumors with BRCA1/2 and CCNE1 aberrations. Pathway analyses suggested that homologous recombination is defective in about half of tumors, and that Notch and FOXM1 signaling are involved in serous ovarian cancer pathophysiology.
RNA interference (RNAi) is a universal and evolutionarily conserved phenomenon of post-transcriptional gene silencing by means of sequence-specific mRNA degradation, triggered by small double-stranded RNAs. Because this mechanism can be efficiently induced in vivo by expressing target-complementary short hairpin RNA (shRNA) from non-viral and viral vectors, RNAi is attractive for functional genomics and human therapeutics. Here we systematically investigate the long-term effects of sustained high-level shRNA expression in livers of adult mice. Robust shRNA expression in all the hepatocytes after intravenous infusion was achieved with an optimized shRNA delivery vector based on duplex-DNA-containing adeno-associated virus type 8 (AAV8). An evaluation of 49 distinct AAV/shRNA vectors, unique in length and sequence and directed against six targets, showed that 36 resulted in dose-dependent liver injury, with 23 ultimately causing death. Morbidity was associated with the downregulation of liver-derived microRNAs (miRNAs), indicating possible competition of the latter with shRNAs for limiting cellular factors required for the processing of various small RNAs. In vitro and in vivo shRNA transfection studies implied that one such factor, shared by the shRNA/miRNA pathways and readily saturated, is the nuclear karyopherin exportin-5. Our findings have fundamental consequences for future RNAi-based strategies in animals and humans, because controlling intracellular shRNA expression levels will be imperative. However, the risk of oversaturating endogenous small RNA pathways can be minimized by optimizing shRNA dose and sequence, as exemplified here by our report of persistent and therapeutic RNAi against human hepatitis B virus in vivo.
Adeno-associated virus (AAV) serotypes differ broadly in transduction efficacies
Standard protocols for the generation of adenoassociated virus type 2 (AAV-2)-based vectors for human gene therapy applications require cotransfection of cells with a recombinant AAV (rAAV) vector plasmid and a packaging plasmid that provides the AAV rep and cap genes. The transfected cells must also be overinfected with a helper virus, e.g., adenovirus (Ad), which delivers multiple helper functions necessary for rAAV production. Therefore, rAAV stocks produced using these protocols are contaminated with helper adenovirus. The generation of a novel packaging/helper plasmid, pDG, containing all AAV and Ad functions required for amplification and packaging of AAV vector plasmids, is described here. Cotransfection of cells with pDG and an AAV vector plasmid was sufficient for production of infectious rAAV, resulting in helper virus-free rAAV stocks. The rAAV titers obtained using pDG as packaging plasmid were up to 10-fold higher than those achieved using conventional protocols for rAAV production. Replacement of the AAV-2 p5 promoter by an MMTV-LTR promoter in pDG led to reduced expression of Rep78/68; however, expression of the VP proteins was significantly increased compared with VP levels from standard packaging plasmids. Immunofluorescence analyses showed that the strong accumulation of VP proteins in pDG-transfected cells resulted in enhanced AAV capsid assembly, which is limiting for efficient rAAV production. Furthermore, using a monoclonal antibody highly specific for AAV-2 capsids (A20), an rAAV affinity purification procedure protocol was established. The application of the tools described here led to a significant improvement in recombinant AAV vector production and purification.
Recent evidence has contradicted the prevailing view that homeostasis and regeneration of the adult liver are mediated by self duplication of lineage-restricted hepatocytes and biliary epithelial cells. These new data suggest that liver progenitor cells do not function solely as a backup system in chronic liver injury; rather, they also produce hepatocytes after acute injury and are in fact the main source of new hepatocytes during normal hepatocyte turnover. In addition, other evidence suggests that hepatocytes are capable of lineage conversion, acting as precursors of biliary epithelial cells during biliary injury. To test these concepts, we generated a hepatocyte fate-tracing model based on timed and specific Cre recombinase expression and marker gene activation in all hepatocytes of adult Rosa26 reporter mice with an adenoassociated viral vector. We found that newly formed hepatocytes derived from preexisting hepatocytes in the normal liver and that liver progenitor cells contributed minimally to acute hepatocyte regeneration. Further, we found no evidence that biliary injury induced conversion of hepatocytes into biliary epithelial cells. These results therefore restore the previously prevailing paradigms of liver homeostasis and regeneration. In addition, our new vector system will be a valuable tool for timed, efficient, and specific loop out of floxed sequences in hepatocytes.
We have used multiplexed high-throughput sequencing to characterize changes in small RNA populations that occur during viral infection in animal cells. Small RNA-based mechanisms such as RNA interference (RNAi) have been shown in plant and invertebrate systems to play a key role in host responses to viral infection. Although homologs of the key RNAi effector pathways are present in mammalian cells, and can launch an RNAi-mediated degradation of experimentally targeted mRNAs, any role for such responses in mammalian host-virus interactions remains to be characterized. Six different viruses were examined in 41 experimentally susceptible and resistant host systems. We identified virus-derived small RNAs (vsRNAs) from all six viruses, with total abundance varying from “vanishingly rare” (less than 0.1% of cellular small RNA) to highly abundant (comparable to abundant micro-RNAs “miRNAs”). In addition to the appearance of vsRNAs during infection, we saw a number of specific changes in host miRNA profiles. For several infection models investigated in more detail, the RNAi and Interferon pathways modulated the abundance of vsRNAs. We also found evidence for populations of vsRNAs that exist as duplexed siRNAs with zero to three nucleotide 3′ overhangs. Using populations of cells carrying a Hepatitis C replicon, we observed strand-selective loading of siRNAs onto Argonaute complexes. These experiments define vsRNAs as one possible component of the interplay between animal viruses and their hosts.
Adeno-associated virus serotype 8 (AAV8) is currently emerging as a powerful gene transfer vector, owing to its capability to efficiently transduce many different tissues in vivo. While this is believed to be in part due to its ability to uncoat more readily than other AAV serotypes such as AAV2, understanding all the processes behind AAV8 transduction is important for its application and optimal use in human gene therapy. Here, we provide the first report of a cellular receptor for AAV8, the 37/67-kDa laminin receptor (LamR). We document binding of LamR to AAV8 capsid proteins and intact virions in vitro and demonstrate its contribution to AAV8 transduction of cultured cells and mouse liver in vivo. We also show that LamR plays a role in transduction by three other closely related serotypes (AAV2, -3, and -9). Sequence and deletion analysis allowed us to map LamR binding to two protein subdomains predicted to be exposed on the AAV capsid exterior. Use of LamR, which is constitutively expressed in many clinically relevant tissues and is overexpressed in numerous cancers, provides a molecular explanation for AAV8's broad tissue tropism. Along with its robust transduction efficiency, our findings support the continued development of AAV8-based vectors for clinical applications in humans, especially for tumor gene therapy.Adeno-associated virus (AAV) is an increasingly popular gene transfer vector with a number of inherent advantages over other vectors, including a lack of pathogenicity and the ability to mediate long-term gene expression in a variety of tissues in vivo. Of particular benefit is the feasibility to pseudotype recombinant AAV genomes (typically derived from the AAV serotype 2 [AAV2] prototype) with capsids from any of the over 100 identified naturally occurring human or nonhuman viral isolates (4,8,9,11,25) or with synthetic "designer" shells engineered via capsid DNA shuffling or mutagenesis (18). This results in vector particles with distinct properties, including unique tissue biodistribution and transduction profiles, and thus significantly contributes to the versatility of the AAV vector system. Thus far, AAV2 has been the primary serotype tested in clinical trials, but many alternative serotypes that offer specific advantages for certain diseases are currently in preclinical development. Among these, perhaps the most interesting candidate is AAV8. We and others recently documented unusually robust and sustained transgene expression from AAV8 vectors in numerous tissues, including the liver, heart, and skeletal muscle (9,20,36). In fact, AAV8 resulted in up to 20-foldhigher liver transduction in mice than AAV2 did, despite an 83% amino acid similarity of the two viruses (20). We also showed that the higher rate of AAV8 capsid uncoating compared to AAV2 may be responsible for the increased transduction efficiency (31), allowing AAV8 to be transduced in almost 100% of hepatocytes (20). A second advantage of AAV8 is that since it is a primate virus (isolated from rhesus monkeys), vectors derived th...
We present a simple and safe strategy for producing high-titer adeno-associated virus (AAV) vectors derived from six different AAV serotypes (AAV-1 to AAV-6). The method, referred to as "HOT," is helper virus free, optically controllable, and based on transfection of only two plasmids, i.e., an AAV vector construct and one of six novel AAV helper plasmids. The latter were engineered to carry AAV serotype rep and cap genes together with adenoviral helper functions, as well as unique fluorescent protein expression cassettes, allowing confirmation of successful transfection and identification of the transfected plasmid. Cross-packaging of vector DNA derived from AAV-2, -3, or -6 was up to 10-fold more efficient using our novel plasmids, compared to a conservative adenovirus-dependent method. We also identified a variety of useful antibodies, allowing detection of Rep or VP proteins, or assembled capsids, of all six AAV serotypes. Finally, we describe unique cell tropisms and kinetics of transgene expression for AAV serotype vectors in primary or transformed cells from four different species. In sum, the HOT strategy and the antibodies presented here, together with the reported findings, should facilitate and support the further development of AAV serotype vectors as powerful new tools for human gene therapy.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers