Abstract-A robust semi-deterministic facet model for the computation of the radar scattering cross section from the ocean-like surface is presented. As a facet-based theory, it is a more comprehensive model which can reflect the specular and diffuse configurations, as well as the mono-and bistatic features. Significant computational efficiency and good agreement with experimental data are observed, which makes the proposed facet model well suitable for fast estimation on EM scattering and synthetic aperture radar (SAR) imagery simulation of marine scene.
The small slope approximation (SSA) method is a practical method to calculate the electromagnetic (EM) scattering from rough surfaces. However, the SSA method requires that the interval for sampling surfaces must be small enough, such as less than one-tenth of incident wavelength. This constraint condition will cause the problem of huge memory consumption and insufficient memory when the EM scattering of large rough surfaces is calculated. Although the hard disk has large space to keep data and can solve the insufficient memory problem, its read/write speed is still too slow. In addition, massive data transmission will reduce the computational efficiency for the compute unified device architecture (CUDA) parallel computation under some conditions. In this paper, the main idea of the spectral decomposition modeling method is that the whole spectrum of rough surface is divided into several parts and these parts can be used to generate differentscale rough surfaces. Then, by analyzing the different-scale rough surfaces, the large rough surface can be achieved and applied to the calculation of EM scattering with the SSA method. Due to the small memory consumption of different-scale rough surfaces, it takes less time to translate data for the different-scale rough surfaces than that for the standard large surface. Thus, the spectral decomposition modeling method could readily be applied to CUDA parallel computation.Index Terms-Compute unified device architecture (CUDA), rough surface, scattering, small-slope approximation, spectral decomposition modeling.
Small slope approximation (SSA) is a widely accepted approach in sea surface electromagnetic (EM) scattering studies. Nevertheless, the spatial sample interval used for sea surface should be around or even smaller than one-eighth of the incident wavelength to ensure EM scattering calculation accuracy, which requires a huge amount of computation, creating an obstacle to scattering numerical simulation, especially for high microwave band incident waves and large sea surface scenes. In this paper, a novel realization approach for SSA is proposed to significantly decrease the computation demands and computer memory requirements in sea surface scattering simulation. First, the sea surface is decomposed into two scales, and each scale has its own spatial sample interval. Then, the inclination state of the large-scale sea surface is determined under a specific wind speed. After that, scattering calculations of a typical surface cell with a finely sampled structure are completed and saved in all possible situations. Finally, scattering results for all the cells of a concrete sea surface are extracted from the saved cell scattering data base. From the different kinds of scattering result comparisons, it is demonstrated that this novel SSA realization approach can attain almost similar scattering results to exact SSA. This approach can be broadly applied in composite scattering studies, and remote sense imaging simulation of large sea surfaces with multiple targets.
Abstract-The Doppler spectral characteristics of electromagnetic backscattered echoes from dynamic nonlinear surfaces of finite-depth sea is investigated with the second-order small-slope approximation (SSA-II). The revised nonlinear hydrodynamic choppy wave model (CWM) combining with an experiment-verified shoaling coefficient is utilized to model the finite-depth sea wave profiles, and the simulated surfaces of finite-depth sea show steeper crests and more flat troughs as depth decreases. First, Comparison of the Doppler spectra for linear sea surfaces and nonlinear choppy sea surfaces shows that nonlinear hydrodynamic effect greatly enhances the Doppler shift and the Doppler spectrum bandwidth, and the predicted results agree well with the rigorous numerical model data. The Doppler spectra of backscattered echoes from finite-depth sea with different depths are further evaluated. At small incident angles, the Doppler shifts and the spectra bandwidths are much lower for shallower sea, and the opposite situation can be gradually observed for increased incident angles. This indicates that the nonlinear wave-wave interactions among waves occur more frequently in finite-depth sea and the long waves will be suppressed while shorter wind waves will be boosted in shallower water. Moreover, the dependence of the Doppler spectral characteristics on polarization is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.