Representative subsets of global climate models (GCMs) are often used in climate change impact studies to account for uncertainty in ensemble climate projections. However, the effectiveness of such subsets has seldom been assessed for the estimations of either the mean or the spread of the full ensembles. We assessed two different approaches that were employed to select 5 GCMs from a 20-member ensemble of GCMs from the CMIP5 ensemble for projecting canola and spring wheat yields across Canada under RCP 4.5 and 8.5 emission scenarios in the periods 2040–2069 and 2070–2099, based on crop simulation models. Averages and spreads of the simulated crop yields using the 5-GCM subsets selected by T&P and KKZ approaches were compared with the full 20-GCM ensemble. Our results showed that the 5-GCM subsets selected by the two approaches could produce full-ensemble means with a relative absolute error of 2.9–4.7% for canola and 1.5–2.2% for spring wheat, and covers 61.8–91.1% and 66.1–80.8% of the full-ensemble spread for canola and spring wheat, respectively. Our results also demonstrated that both approaches were very likely to outperform a subset of randomly selected 5 GCMs in terms of a smaller error and a larger range.
Using climate scenarios from only 1 or a small number of global climate models (GCMs) in climate change impact studies may lead to biased assessment due to large uncertainty in climate projections. Ensemble means in impact projections derived from a multi-GCM ensemble are often used as best estimates to reduce bias. However, it is often time consuming to run process-based models (e.g. hydrological and crop models) in climate change impact studies using numerous climate scenarios. It would be interesting to investigate if using a reduced number of climate scenarios could lead to a reasonable estimate of the ensemble mean. In this study, we generated a single ensemble-mean climate scenario (En-WG scenario) using ensemble means of the change factors derived from 20 GCMs included in CMIP5 to perturb the parameters in a weather generator, LARS-WG, for selected locations across Canada. We used En-WG scenarios to drive crop growth models in DSSAT ver. 4.7 to simulate crop yields for canola and spring wheat under RCP4.5 and RCP8.5 emission scenarios. We evaluated the potential of using the En-WG scenarios to simulate crop yields by comparing them with crop yields simulated with the LARS-WG generated climate scenarios based on each of the 20 GCMs (WG scenarios). Our results showed that simulated crop yields using the En-WG scenarios were often close to the ensemble means of simulated crop yields using the 20 WG scenarios with a high probability of outperforming simulations based on a randomly selected GCM. Further studies are required, as the results of the proposed approach may be influenced by selected crop types, crop models, weather generators, and GCM ensembles.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers