A major problem of classification learning is the lack of ground-truth labeled data. It is usually expensive to label new data instances for training a model. To solve this problem, domain adaptation in transfer learning has been proposed to classify target domain data by using some other source domain data, even when the data may have different distributions. However, domain adaptation may not work well when the differences between the source and target domains are large. In this paper, we design a novel transfer learning approach, called BIG (Bridging Information Gap), to effectively extract useful knowledge in a worldwide knowledge base, which is then used to link the source and target domains for improving the classification performance. BIG works when the source and target domains share the same feature space but different underlying data distributions. Using the auxiliary source data, we can extract a "bridge" that allows cross-domain text classification problems to be solved using standard semisupervised learning algorithms. A major contribution of our work is that with BIG, a large amount of worldwide knowledge can be easily adapted and used for learning in the target domain. We conduct experiments on several real-world cross-domain text classification tasks and demonstrate that our proposed approach can outperform several existing domain adaptation approaches significantly.
Background: Protein subcellular localization is concerned with predicting the location of a protein within a cell using computational method. The location information can indicate key functionalities of proteins. Accurate predictions of subcellular localizations of protein can aid the prediction of protein function and genome annotation, as well as the identification of drug targets. Computational methods based on machine learning, such as support vector machine approaches, have already been widely used in the prediction of protein subcellular localization. However, a major drawback of these machine learning-based approaches is that a large amount of data should be labeled in order to let the prediction system learn a classifier of good generalization ability. However, in real world cases, it is laborious, expensive and time-consuming to experimentally determine the subcellular localization of a protein and prepare instances of labeled data.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.