Inheritance of a defect in a neuronal mechanism that regulates response to auditory stimuli was studied in nine families with multiple cases of schizophrenia. The defect, a decrease in the normal inhibition of the P50 auditoryevoked response to the second of paired stimuli, is associated with attentional disturbances in schizophrenia. Decreased P50 inhibition occurs not only in most schizophrenics, but also in many of their nonschizophrenic relatives, in a distribution consistent with inherited vulnerability for the illness. Neurobiological investigations in both humans and animal models indicated that decreased function of the ␣7-nicotinic cholinergic receptor could underlie the physiological defect. In the present study, a genome-wide linkage analysis, assuming autosomal dominant transmission, showed that the defect is linked [maximum logarithm of the odds (lod) score ؍ 5.3 with zero recombination] to a dinucleotide polymorphism at chromosome 15q13-14, the site of the ␣7-nicotinic receptor. Despite many schizophrenics' extremely heavy nicotine use, nicotinic receptors were not previously thought to be involved in schizophrenia. The linkage data thus provide unique new evidence that the ␣7-nicotinic receptor gene may be responsible for the inheritance of a pathophysiological aspect of the illness.
Microbial cellulose has proven to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavors, such as paper products, electronics, acoustics, and biomedical devices. In fact, biomedical devices recently have gained a significant amount of attention because of an increased interest in tissue-engineered products for both wound care and the regeneration of damaged or diseased organs. Due to its unique nanostructure and properties, microbial cellulose is a natural candidate for numerous medical and tissue-engineered applications. For example, a microbial cellulose membrane has been successfully used as a wound-healing device for severely damaged skin and as a small-diameter blood vessel replacement. The nonwoven ribbons of microbial cellulose microfibrils closely resemble the structure of native extracellullar matrices, suggesting that it could function as a scaffold for the production of many tissue-engineered constructs. In addition, microbial cellulose membranes, having a unique nanostructure, could have many other uses in wound healing and regenerative medicine, such as guided tissue regeneration (GTR), periodontal treatments, or as a replacement for dura mater (a membrane that surrounds brain tissue). In effect, microbial cellulose could function as a scaffold material for the regeneration of a wide variety of tissues, showing that it could eventually become an excellent platform technology for medicine. If microbial cellulose can be successfully mass produced, it will eventually become a vital biomaterial and will be used in the creation of a wide variety of medical devices and consumer products.
: Delivery mode and feeding method influenced the fecal microbiota of European infants at 6 weeks, as expected, but the effect of country of birth was more pronounced, with dominant bifidobacteria in northern countries and greater early diversification in southern European countries.
INTRODUCTIONNe FOR A GENERIC REVISION of the Cicadellinae became obvious to me during the more than seven years I worked at the U.S.National Museum on the staff of the Division of Insect Identification, U.S. Department of Agriculture. Specimens of cicadellines sent in from all over the world, but especially from the Neotropical region, could rarely be identified to genus on the basis of existing literature.Even when it was possible to identify a species, it was often impossible to apply a generic name which would not form a new combination.This raised the possibility of all sorts of new combinations being
The discovery of the CD1 antigen presentation pathway has expanded the spectrum of T-cell antigens to include lipids, but the range of natural lipid antigens and functions of CD1-restricted T cells in vivo remain poorly understood. Here we show that the T-cell antigen receptor and the CD1c protein mediate recognition of an evolutionarily conserved family of isoprenoid glycolipids whose members include essential components of protein glycosylation and cell-wall synthesis pathways. A CD1c-restricted, mycobacteria-specific T-cell line recognized two previously unknown mycobacterial hexosyl-1-phosphoisoprenoids and structurally related mannosyl-beta1-phosphodolichols. Responses to mannosyl-beta1-phosphodolichols were common among CD1c-restricted T-cell lines and peripheral blood T lymphocytes of human subjects recently infected with M. tuberculosis, but were not seen in naive control subjects. These results define a new class of broadly distributed lipid antigens presented by the CD1 system during infection in vivo and suggest an immune mechanism for recognition of senescent or transformed cells that are known to have altered dolichol lipids.
New technologies rely on the development of new materials, and these may simply be the innovative combination of known components. The structural combination of a polymer hydrogel network with a nanoparticle (metals, non‐metals, metal oxides, and polymeric moieties) holds the promise of providing superior functionality to the composite material with applications in diverse fields, including catalysis, electronics, bio‐sensing, drug delivery, nano‐medicine, and environmental remediation. This mixing may result in a synergistic property enhancement of each component: for example, the mechanical strength of the hydrogel and concomitantly decrease aggregation of the nanoparticles. These mutual benefits and the associated potential applications have seen a surge of interest in the past decade from multi‐disciplinary research groups. Recent advances in nanoparticle–hydrogel composites are herein reviewed with a focus on their synthesis, design, potential applications, and the inherent challenges accompanying these exciting materials.
We report the growth and characterization of record‐efficiency ZnO/CdS/CuInGaSe2 thin‐film solar cells. Conversion efficiencies exceeding 19% have been achieved for the first time, and this result indicates that the 20% goal is within reach. Details of the experimental procedures are provided, and material and device characterization data are presented. Published in 2003 by John Wiley & Sons, Ltd.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.