The risk of HIV infection after percutaneous exposure increases with a larger volume of blood and, probably, a higher titer of HIV in the source patient's blood. Postexposure prophylaxis with zidovudine appears to be protective.
We synthesize insights from current understanding of drought impacts at stand to biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand-level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate-induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway.Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought-tolerant species and genotypes, artificial regeneration, and the development of multi-structured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.
Recognition of the importance of intraspecific variation in ecological processes has been growing, but empirical studies and models of global change have only begun to address this issue in detail. This review discusses sources and patterns of intraspecific trait variation and their consequences for understanding how ecological processes and patterns will respond to global change. We examine how current ecological models and theories incorporate intraspecific variation, review existing data sources that could help parameterize models that account for intraspecific variation in global change predictions, and discuss new data that may be needed. We provide guidelines on when it is most important to consider intraspecific variation, such as when trait variation is heritable or when nonlinear relationships are involved. We also highlight benefits and limitations of different model types and argue that many common modeling approaches such as matrix population models or global dynamic vegetation models can allow a stronger consideration of intraspecific trait variation if the necessary data are available. We recommend that existing data need to be made more accessible, though in some cases, new experiments are needed to disentangle causes of variation.
High biodiversity of forests is not predicted by traditional models, and evidence for trade‐offs those models require is limited. High‐dimensional regulation (e.g., N factors to regulate N species) has long been recognized as a possible alternative explanation, but it has not be been seriously pursued, because only a few limiting resources are evident for trees, and analysis of multiple interactions is challenging. We develop a hierarchical model that allows us to synthesize data from long‐term, experimental, data sets with processes that control growth, maturation, fecundity, and survival. We allow for uncertainty at all stages and variation among 26 000 individuals and over time, including 268 000 tree years, for dozens of tree species. We estimate population‐level parameters that apply at the species level and the interactions among latent states, i.e., the demographic rates for each individual, every year. The former show that the traditional trade‐offs used to explain diversity are not present. Demographic rates overlap among species, and they do not show trends consistent with maintenance of diversity by simple mechanisms (negative correlations and limiting similarity). However, estimates of latent states at the level of individuals and years demonstrate that species partition environmental variation. Correlations between responses to variation in time are high for individuals of the same species, but not for individuals of different species. We demonstrate that these relationships are pervasive, providing strong evidence that high‐dimensional regulation is critical for biodiversity regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.