Abstract-Driven by the demands on healthcare resulting from the shift toward more sedentary lifestyles, considerable effort has been devoted to the monitoring and classification of human activity. In previous studies, various classification schemes and feature extraction methods have been used to identify different activities from a range of different datasets. In this paper, we present a comparison of 14 methods to extract classification features from accelerometer signals. These are based on the wavelet transform and other well-known time-and frequency-domain signal characteristics. To allow an objective comparison between the different features, we used two datasets of activities collected from 20 subjects. The first set comprised three commonly used activities, namely, level walking, stair ascent, and stair descent, and the second a total of eight activities. Furthermore, we compared the classification accuracy for each feature set across different combinations of three different accelerometer placements. The classification analysis has been performed with robust subject-based cross-validation methods using a nearest-neighbor classifier. The findings show that, although the wavelet transform approach can be used to characterize nonstationary signals, it does not perform as accurately as frequencybased features when classifying dynamic activities performed by healthy subjects. Overall, the best feature sets achieved over 95% intersubject classification accuracy.
A new method for estimating knee joint flexion/extension angles from segment acceleration and angular velocity data is described. The approach uses a combination of Kalman filters and biomechanical constraints based on anatomical knowledge. In contrast to many recently published methods, the proposed approach does not make use of the earth's magnetic field and hence is insensitive to the complex field distortions commonly found in modern buildings. The method was validated experimentally by calculating knee angle from measurements taken from two IMUs placed on adjacent body segments. In contrast to many previous studies which have validated their approach during relatively slow activities or over short durations, the performance of the algorithm was evaluated during both walking and running over 5 minute periods. Seven healthy subjects were tested at various speeds from 1 to 5 miles/hour. Errors were estimated by comparing the results against data obtained simultaneously from a 10 camera motion tracking system (Qualysis). The average measurement error ranged from 0.7 degrees for slow walking (1 mph) to 3.4 degrees for running (5mph). The joint constraint used in the IMU analysis was derived from the Qualysis data.Limitations of the method, its clinical application and its possible extension are discussed.
An inverse dynamics multi-segment model of the body was combined with optimisation techniques to simulate normal walking in the sagittal plane on level ground. Walking is formulated as an optimal motor task subject to multiple constraints with minimisation of mechanical energy expenditure over a complete gait cycle being the performance criterion. All segmental motions and ground reactions were predicted from only three simple gait descriptors (inputs): walking velocity, cycle period and double stance duration. Quantitative comparisons of the model predictions with gait measurements show that the model reproduced the significant characteristics of normal gait in the sagittal plane. The simulation results suggest that minimising energy expenditure is a primary control objective in normal walking. However, there is also some evidence for the existence of multiple concurrent performance objectives.
Background: In the evaluation of upper limb impairment post stroke there remains a gap between detailed kinematic analyses with expensive motion capturing systems and common clinical assessment tests. In particular, although many clinical tests evaluate the performance of functional tasks, metrics to characterise upper limb kinematics are generally not applicable to such tasks and very limited in scope. This paper reports on a novel, user-friendly methodology that allows for the assessment of both signal magnitude and timing variability in upper limb movement trajectories during functional task performance. In order to demonstrate the technique, we report on a study in which the variability in timing and signal magnitude of data collected during the performance of two functional tasks is compared between a group of subjects with stroke and a group of individually matched control subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.