This paper presents an automatic procedure using the membrane theory of shells to analyse and define geometries for axisymmetric domes subjected to its own weight, varying its thickness and bend radius, to obtain constant normal stresses along the structure. The procedure offers a great advantage over the analytic solution of the problem and usual shell numerical methods when one wants to determine the dome geometry with constant stresses, since the presented procedure has the goal stress as input value for obtaining the geometry, as opposed to the usual numerical methods, where the reverse occurs. An example clarifies the differences between a spherical dome with constant thickness and a dome subjected to constant stress. The convergence of the method for a specific material weight and stress for a dome are also presented.
This article examines numerically the flexibility influence of support beams in static response and dynamic properties of a symmetric plate formed by massive slabs of reinforced concrete in elastic linear regime, using the Finite Element Method. In the static response the variation of bending mo-ments and displacements are evaluated, which depend on the relationship between the flexibility of the slab and the beam. The evaluation of dynamic properties is held in undamped free vibration, through which the vibration modes and the values of the natural frequencies is obtained, which are compared with the limits of the Brazilian standard code for design of concrete structures. Results show that the response may show great variation due to the change in the relationship between bending stiffness of the slabs and the beams.
This paper presents a nonlinear static analysis of a reinforced concrete plane frame. It has as main objective is to realize a global stability verification of a plane frame, by using geometric stiffness matrix. In order to obtain first and second order combined effects, equilibrium and kinematic relations were studied in the deformed geometric configuration. These results were obtained by using geometric stiffness matrix and multiplying horizontal forces by Gamma-Z coefficient. Both procedures disclosed very similar results in the study, indicating that Gamma-Z can be used to study equilibrium and kinematic relations in deformed geometrical configuration of the structure.
To analyze the reliability of slender columns subjected to axial force and uniaxial bending moment, with a slenderness index between 100 and 140, 216 columns were modeled. The square cross-section was adopted, with three different configurations for longitudinal reinforcement. In the calculation, the general method with the linear creep theory was applied. Several factors were varied: slenderness index, reinforcement ratio, steel bars arrangement, compressive strength of concrete, and first-order relative eccentricity. For analysis purposes, the Monte Carlo method was adopted, followed by the First Order Reliability Method (FORM). Considering the results obtained, it was observed that the reliability index is usually higher for lower reinforcement ratios and varies according to the configuration of the cross-section.
ResumoIn this work a computational model is presented to evaluate the ultimate bending moment capacity of the cross section of reinforced and prestressed concrete beams. The computational routines follow the requirements of NBR 6118: 2014. This model is validated by comparing the results obtained with forty-one experimental tests found in the international bibliography. It is shown that the model is very simple, fast and reaches results very close to the experimental ones, with percentage difference of the order of 5%. This tool proved to be a great ally in the structural analysis of reinforced and prestressed concrete elements, besides it is a simplified alternative to obtain the cross section ultimate bending moment.Keywords: reinforced concrete, prestressed concrete, ultimate bending moment, beams.Neste trabalho é apresentado um modelo computacional que calcula o momento resistente último de seções transversais de vigas de concreto armado e protendido. As rotinas computacionais seguem as prescrições da NBR 6118: 2014. Este modelo é validado através da comparação dos resultados obtidos com quarenta e um ensaios experimentais encontrados na bibliografia internacional. É mostrado que o modelo é bastante simples, rápido e atinge resultados muito próximos dos experimentais, com diferença percentual da ordem de 5%. Esta ferramenta se mostrou uma grande aliada na análise de elementos estruturais de concreto armado e protendido, além de uma alternativa simplificada para obtenção do momento de ruína da seção transversal.Palavras-chave: concreto armado, concreto protendido, momento resistente último, vigas.
308
This paper studies the modeling of symmetric and asymmetric flat slabs, presenting alternatives to the problem of singularity encountered when the slab is modeled considering columns as local support. A model that includes the integrated slab x column analysis was proposed, distributing the column reactions under the slab. The procedure used transforms the bending moment and column axial force in a distributed load, which will be applied to the slab in the opposite direction of gravitational loads. Thus, the bending moment diagram gets smooth in the punching region with a considerable reduction of values, being very little sensible to the variation of used mesh. About the column, it was not seen any significant difference in the axial force, although the same haven't occurred with the bending moments results. The final part of the work uses geoprocessing programs for a three-dimensional view of bending moments, allowing a new comprehension the behavior of these internal forces in the entire slab.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.