Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.
a global database for metacommunity ecology, integrating species, traits, environment and space alienor Jeliazkov et al. #the use of functional information in the form of species traits plays an important role in explaining biodiversity patterns and responses to environmental changes. although relationships between species composition, their traits, and the environment have been extensively studied on a case-by-case basis, results are variable, and it remains unclear how generalizable these relationships are across ecosystems, taxa and spatial scales. to address this gap, we collated 80 datasets from trait-based studies into a global database for metaCommunity Ecology: Species, Traits, Environment and Space; "CEStES". Each dataset includes four matrices: species community abundances or presences/absences across multiple sites, species trait information, environmental variables and spatial coordinates of the sampling sites. the CEStES database is a live database: it will be maintained and expanded in the future as new datasets become available. By its harmonized structure, and the diversity of ecosystem types, taxonomic groups, and spatial scales it covers, the CEStES database provides an important opportunity for synthetic trait-based research in community ecology. Background & SummaryA major challenge in ecology is to understand the processes underlying community assembly and biodiversity patterns across space 1,2 . Over the three last decades, trait-based research, by taking up this challenge, has drawn increasing interest 3 , in particular with the aim of predicting biodiversity response to environment. In community ecology, it has been equated to the 'Holy Grail' that would allow ecologists to approach the potential processes underlying metacommunity patterns 4-7 . In macroecology, it is common to study biodiversity variation through its taxonomic and functional facets along gradients of environmental drivers 8-10 . In biodiversity-ecosystem functioning research, trait-based diversity measures complement taxonomic ones to predict ecosystem functions 11 offering early-warning signs of ecosystem perturbation 12 .The topic of Trait-Environment Relationships (TER) has been extensively studied across the globe and across the tree of life. However, each study deals with a specific system, taxonomic group, and geographic region and uses different methods to assess the relationship between species traits and the environment. As a consequence, we do not know how generalizable apparent relationships are, nor how they vary across ecosystems, realms, and taxonomic groups. In addition, while there is an emerging synthesis about the role of traits for terrestrial plant communities 13,14 , we know much less about other groups and ecosystem types.To address these gaps, we introduce the CESTES database -a global database for metaCommunity Ecology: Species, Traits, Environment and Space. This database assembles 80 datasets from studies that analysed empirical multivariate trait-environment relationships between 1996 (the first...
The relationship between the size of the particle fractions of the soil substrate and the diversity of the spontaneously developing vegetation was investigated on coal mine spoil heaps in Upper Silesia (Southern Poland). The analyses were based on 2567 research plots of developed spontaneous vegetation and their associated soil substrate samples collected from 112 coal mine spoil heaps. For each research plot the prevailing particle size fraction was determined (stones, gravel, sand, silt), the species composition and abundance was recorded and the species richness (S), Shannon-Wiener diversity index (H′), Simpson (C) and Evenness (E) indices were used to determine species diversity. From a total of 119 research plots (in all particle size fraction categories), the values of 15 physicochemical properties (pH, electrical conductivity, water holding capacity, moisture, carbon content, total N, available P, Mg and exchange cations Ca, Mg, K, Na, fine particles (%), gravel (%), stone (%)) were obtained to asses their impact on the floristic composition of vegetation patches using Canonical Correspondence Analysis (CCA). Additionally, functional traits of the dominant species of each vegetation patch (life forms, life strategies and socio-ecological groups), were selected to analyse their relation to substrate texture. It was shown that the highest species richness and the highest values for Shannon-Wiener diversity index, as well as Simpson and Evenness indices, were obtained in plots formed on stones. Moreover, the greatest variation in the participation of species representing different habitats, life forms, and life strategies was found on gravelly substrates. Contrary to our expectations, the vegetation diversity (in terms of both species and their functional traits) was not highest in habitats with a high composition of fine size particles.
Phytosociological records from three different woodlands, each with oak-hornbeam stands (Tilio-Carpinetum), were analyzed in terms of the presence/absence of two harmful species, alien Impatiens parviflora and native Carex brizoides. Records from the Białowieża Primeval Forest (northeastern Poland) represented old-growth forest, and others from the Silesian Upland (southeastern Poland) represented managed forest and invaded forest. The three sets of records were compared in terms of stand structure, Ellenberg indicator scores, and the shares of various plant functional types. Vegetation analyses also included species richness scores, Shannon-Wiener indices, and DCA and CCA ordination with the cover of the two species as variables. There were fewer differences between managed and old-growth forest than between managed and invaded forest. Invaded forest was characterized by low species richness, higher frequency of hemerophilous species, lower frequency of myrmecochores, and higher light availability and temperature. It was concluded that, of the two invasive species, C. brizoides is a better indicator of human-induced disturbance. Both cover and binary data explained changes in floristic composition in the presence of this species. Invasion by both species was favored by forest management practices. Their presence led to further species impoverishment, and harmed the quality of the forest floor habitat. #
The successful establishment of vegetation, soil development and biogeochemical cycling during the restoration process of mine tailings requires a diverse and metabolically active microbial communities. The objective of this study was to test whether there is any link between the functional groups of both the dominant plant species and soil microbial communities on unreclaimed coal mine spoil heaps of different age located in the Silesian Upland (Poland). At each sampling site the dominant plant species were recorded and characterised based on their Raunkiaer's life form, socio-ecological group and their potential to form mycorrhiza. The functional diversity of the plantassociated microbial communities was assessed using the microbial carbon-utilisation guilds generated using the Biolog method. We observed no differences in the microbial functional diversity, but a gradual increase in the plant functional diversity with the age of the heap. Our results indicate that trees, plants with the potential to form ectomycorrhiza, and deciduous plants strongly affected the carbon-utilisation profiles. The mean proportion of microbe guilds in dominant plant patches accounts for 60 % of the variance while the soil physicochemical parameters explained only 30 % of the variance. This suggest that in post-industrial habitats the biotic features of the soil substratum are more important for the vegetation development than the abiotic parameters.
The aim of the study was to investigate the relationships between the vascular plant species and the associated soil microbial properties at various stages of vegetation development on unclaimed hard coal mine spoil heaps in Upper Silesia (south Poland). The spontaneous vegetation, soil chemistry as well as the activity and structure of microbial communities were recorded on this specific habitat. The colliery heaps were divided into four age classes and the plant species composition and cover abundance were recorded on established plots (2 m × 2 m). The soil microbial activity under the vegetation patches was assessed using fluorescein diacetate hydrolytic activity (FDHA) and the soil microbial biomass and community composition were determined by phospholipid fatty acid (PLFA) biomarkers. Total microbial biomass in soils from the older vegetation plots was significantly higher than those in soils from the younger plots. In all studied samples, microbial communities consisted primarily of bacteria with the dominance of Gram negative bacteria over Gram positive and aerobic microorganisms were more dominant than anaerobic ones. Statistical analysis revealed a correlation between the type of vegetation and microbial community structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.