Biocompatibility of PLLA and stereocomplexed PLA nanofibers was evaluated by subcutaneous implantation in rats for 4-12 weeks. Characterization of the nanofibers was performed by GPC, SEM, wide-angle X-ray diffraction, and optical microscopy of hematoxylin-eosin stained ultrathin sections of explanted nanofibers. Stereocomplexed PLA nanofiber showed slower degradation than PLLA nanofiber and thus retained their shape after prolonged implantation. Furthermore, stereocomplexed PLA nanofiber caused milder inflammatory reaction than PLLA nanofiber. These results offer the potential use of PLLA and stereocomplexed PLA nanofibers as a biomaterial for short-term and long-term tissue regeneration, respectively. Stereocomplexed PLA nanofiber after in vitro degradation showed smaller degree of swelling than PLLA nanofiber. Taking the results of in vivo degradation together with in vitro degradation into consideration, bioabsorption mechanism of the in vivo degradation of the nanofibers is proposed.
Most multicellular organisms can only survive under atmospheric pressure. The reduced pressure of a high vacuum usually leads to rapid dehydration and death. Here we show that a simple surface modification can render multicellular organisms strongly tolerant to high vacuum. Animals that collapsed under high vacuum continued to move following exposure of their natural extracellular surface layer (or that of an artificial coat-like polysorbitan monolaurate) to an electron beam or plasma ionization (i.e., conditions known to enhance polymer formation). Transmission electron microscopic observations revealed the existence of a thin polymerized extra layer on the surface of the animal. The layer acts as a flexible "nano-suit" barrier to the passage of gases and liquids and thus protects the organism. Furthermore, the biocompatible molecule, the component of the nano-suit, was fabricated into a "biomimetic" free-standing membrane. This concept will allow biology-related fields especially to use these membranes for several applications.animal behavior | biophysics | microscopy | nanotechnology | plasma physics
Alloreactive memory T cells are present in virtually all transplant recipients due to prior sensitization or heterologous immunity and mediate injury undermining graft outcome. In mouse models, endogenous memory CD8 T cells infiltrate MHC-mismatched cardiac allografts and produce IFN-γ in response to donor class I MHC within 24 hours post-transplant. The current studies analyzed the efficacy of anti-LFA-1 mAb to inhibit early CD8 T cell cardiac allograft infiltration and activation. Anti-LFA-1 mAb given to C57BL/6 6 (H-2b) recipients of A/J (H-2a) heart grafts on days −1 and 0 completely inhibited CD8 T cell allograft infiltration, markedly decreased neutrophil infiltration, and significantly reduced intra-graft expression levels of IFN-γ-induced genes. Donor-specific T cells producing IFN-γ were at low/undetectable numbers in spleens of anti-LFA-1 mAb treated recipients until day 21. These effects combined to promote substantial prolongation (from day 8 to 27) in allograft survival. Delaying anti-LFA-1 mAb treatment until days 3 and 4 post-transplant did not inhibit early memory CD8 T cell infiltration and proliferation within the allograft. These data indicate that peri-transplant anti-LFA-1 mAb inhibits early donor-reactive memory CD8 T cell allograft infiltration and inflammation suggesting an effective strategy to attenuate the negative effects of heterologous immunity in transplant recipients.
The integration of multiple sensory modalities allows us to adapt to the environment of the outside world. It is widely known that visual stimuli interfere with the processing of auditory information, which is involved in the ability to pay attention. Additionally, visuospatial attention has the characteristic of laterality. It is unclear whether this laterality of visuospatial attention affects the processing of auditory stimuli. The sensorimotor gating system is a neurological process, which filters out unnecessary stimuli from environmental stimuli in the brain. Prepulse inhibition (PPI) is an operational measure of the sensorimotor gating system, which a weaker prestimulus (prepulse), such as a visual stimulus, inhibits the startle reflex elicited by a subsequent robust startling stimulus (pulse) such as a tone. Therefore, we investigated whether the visual stimulus from the left or right visual space affects the sensorimotor gating system in a “rest” task (low attentional condition) and a “selective attention” task (high attentional condition). In the selective attention task, we found that the target prepulse presented in the left and bilateral visual fields suppressed the startle reflex more than that presented in the right visual field. By contrast, there was no laterality of PPI in the no-target prepulse condition, and there was no laterality of PPI in the rest task. These results suggest that the laterality of visuospatial attention affects the sensorimotor gating system depending on the attentional condition. Moreover, the process of visual information processing may differ between the left and right brain.
Effects of solvent exchange and milling on the solid structure of cellulose were investigated, using small- and wide-angle X-ray scattering and solid-state NMR. The solvent exchange facilitated the dissolution of cellulose in LiCl/DMAc with no change of the crystalline structure of cellulose. In contrast, the milling never facilitated the dissolution of cellulose, though the crystalline structure was almost destroyed. These facts show that the crystalline structure of cellulose hardly affects the dissolution in LiCl/DMAc. The fractal dimensions determined by the small-angle X-ray scattering measurements were increased by the solvent exchange, suggesting that the aggregation state of the cellulose microfibril is affected. It was also suggested by the NMR (1)H spin relaxation time measurements that the solvent exchange enhances the molecular mobility of cellulose and shortens the characteristic length along the microfibril, which allows easier access of the solvent molecule to cellulose.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.