BackgroundGood glycaemic control in type 2 diabetes (T2DM) protects the microcirculation. Current guidelines suggest glycaemic targets be relaxed in advanced diabetes. We explored whether disease duration or pre-existing macrovascular complications attenuated the association between hyperglycaemia and microvascular function.Methods743 participants with T2DM (n = 222), cardiovascular disease (CVD = 183), both (n = 177) or neither (controls = 161) from two centres in the UK, underwent standard clinical measures and endothelial dependent (ACh) and independent (SNP) microvascular function assessment using laser Doppler imaging.ResultsPeople with T2DM and CVD had attenuated ACh and SNP responses compared to controls. This was additive in those with both (ANOVA p < 0.001). In regression models, cardiovascular risk factors accounted for attenuated ACh and SNP responses in CVD, whereas HbA1c accounted for the effects of T2DM. HbA1c was associated with ACh and SNP response after adjustment for cardiovascular risk factors (adjusted standardised beta (β) −0.096, p = <0.008 and −0.135, p < 0.001, respectively). Pre-existing CVD did not modify this association (β −0.099; p = 0.006 and −0.138; p < 0.001, respectively). Duration of diabetes accounted for the association between HbA1c and ACh (β −0.043; p = 0.3), but not between HbA1c and SNP (β −0.105; p = 0.02).ConclusionsIn those with T2DM and CVD, good glycaemic control is still associated with better microvascular function, whereas in those with prolonged disease this association is lost. This suggests duration of diabetes may be a better surrogate for “advanced disease” than concomitant CVD, although this requires prospective validation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12933-017-0594-7) contains supplementary material, which is available to authorized users.
Previous studies have reported a vasoconstrictor response in the radial artery during a cuff‐induced low‐flow condition, but a similar low‐flow condition in the brachial artery results in nonuniform reactivity. This variable reactivity to low‐flow influences the subsequent flow‐mediated dilatation (FMD) response following cuff‐release. However, it is uncertain whether reactivity to low‐flow is important in data interpretation in clinical populations and older adults. This study aimed to determine the influence of reactivity to low‐flow on the magnitude of brachial artery FMD response in middle‐aged and older individuals with diverse cardiovascular risk profiles. Data were analyzed from 165 individuals, divided into increased cardiovascular risk (CVR: n = 115, 85M, 67.0 ± 8.8 years) and healthy control (CTRL: n = 50, 30M, 63.2 ± 7.2 years) groups. Brachial artery diameter and blood velocity data obtained from Doppler ultrasound were used to calculate FMD, reactivity to low‐flow and estimated shear rate (SR) using semiautomated edge‐detection software. There was a significant association between reactivity to low‐flow and FMD in overall (r = 0.261), CTRL (r = 0.410) and CVR (r = 0.189, all P < 0.05) groups. Multivariate regression analysis found that reactivity to low‐flow, peak SR, and baseline diameter independently contributed to FMD along with sex, the presence of diabetes, and smoking (total R 2 = 0.450). There was a significant association between reactivity to low‐flow and the subsequent FMD response in the overall dataset, and reactivity to low‐flow independently contributed to FMD. These findings suggest that reactivity to low‐flow plays a key role in the subsequent brachial artery FMD response and is important in the interpretation of FMD data.
The role of microcirculatory dysfunction is increasingly being recognized in the etiopathogenesis of cardiovascular disease. Whilst the importance of detailed mechanistic studies to determine the exact nature of these disturbances is without question, it was large-scale population-based studies that first identified the associations between deranged microvascular perfusion, autoregulation or structure, and subsequent target organ damage. This is the subject of considerable studies to establish whether there is a causal effect in either direction, or simply represents shared risk factors, although it is most likely to be a complex combination of bidirectional interactions. The techniques for investigating microcirculatory function have evolved almost exponentially over the last 75 years: So too have the strategies for investigation. Current epidemiological studies are focusing on attempting to untangle the inter-relationship between risk factors and pathological mechanisms to attempt to determine whether these represent therapeutic targets or simple markers of unmeasured risk. We plan to review the techniques used for these population-based studies, the advances made, and the clinical implications derived.
Individuals with abnormal microvascular reperfusion had a markedly altered pattern of oxygen increase during reperfusion. We propose that this may represent dysfunctional microvascular autoregulation that is clinically important in the etiopathology of target organ damage.
ABSTRACT:Grey-scale median of the common carotid artery intima-media complex (IM-GSM) characterizes the arterial wall composition and low IM-GSM is associated with an increased cardiovascular mortality in the elderly. We aimed to determine differences in IM-GSM between a cohort with cerebrovascular disease and a healthy cohort. Eighty-two healthy individuals (CTRL: 63.2±8.7yrs) and 96 patients with either stroke or transient ischemic attacks (CRVD: 68.6±9.8yrs) were studied. Common carotid artery intima-media thickness (cIMT) and IM-GSM obtained by ultrasound were analysed using semi-automated edgedetection software. IM-GSM was significantly lower in CRVD than CTRL (106±30 vs 124±27 au, p<0.001). IM-GSM was similar between the infarct and non-infarct sides in CRVD. In the pooled cohort of all participants, the lower the quartile of IM-GSM, the greater cIMT and carotid artery remodelling were. These results suggest the presence of an altered atherosclerotic phenotype in the intima-media complex of CVRD patients that can be detected by ultrasound.
Aim. Models combining diabetes and atherosclerosis are important in evaluating the cardiovascular (CV) effects and safety of antidiabetes drugs in the development of treatments targeting CV complications. Our aim was to evaluate if crossing the heterozygous glucokinase knockout mouse (GK+/−) and hyperlipidemic mouse deficient in apolipoprotein E (ApoE−/−) will generate a disease model exhibiting a diabetic and macrovascular phenotype. Methods. The effects of defective glucokinase on the glucose metabolism and on the progression and regression of atherosclerosis on high-fat diets were studied in both genders of GK+/−ApoE−/− and ApoE−/− mice. Coronary vascular function of the female GK+/−ApoE−/− and ApoE−/− mice was also investigated. Results. GK+/−ApoE−/− mice show a stable hyperglycemia which was increased on Western diet. In oral glucose tolerance test, GK+/−ApoE−/− mice showed significant glucose intolerance and impaired glucose-stimulated insulin secretion. Plasma lipids were comparable with ApoE−/− mice; nevertheless the GK+/−ApoE−/− mice showed slightly increased atherosclerosis development. Conclusions. The GK+/−ApoE−/− mice showed a stable and reproducible hyperglycemia, accelerated atherosclerotic lesion progression, and no lesion regression after lipid lowering. This novel model provides a promising tool for drug discovery, enabling the evaluation of compound effects against both diabetic and cardiovascular endpoints simultaneously in one animal model.
Aims/hypothesis Although cardiovascular disease is the biggest cause of death in people with diabetes, microvascular complications have a significant impact on quality of life and financial burden of the disease. Little is known about the progression of microvascular dysfunction in the early stages of type 2 diabetes before the occurrence of clinically apparent complications. We aimed to explore the determinants of endothelial-dependent and-independent microvascular function progression over a 3 year period, in people with and without both diabetes and few clinical microvascular complications. Methods Demographics were collected in 154 participants with type 2 diabetes and in a further 99 participants without type 2 diabetes. Skin microvascular endothelium-dependent response to iontophoresis of acetylcholine and endotheliumindependent responses to sodium nitroprusside were measured using laser Doppler fluximetry. All assessments were repeated 3 years later. Results People with type 2 diabetes had impaired endothelial-dependent microvascular response compared with those without (AUC 93.9 [95% CI 88.1, 99.4] vs 111.9 [102.3, 121.4] arbitrary units [AU] × min, p < 0.001, for those with vs without diabetes, respectively). Similarly, endothelial-independent responses were attenuated in those with diabetes (63.2 [59.2, 67.2] vs 75.1 [67.8, 82.4] AU × min, respectively, p = 0.002). Mean microvascular function declined over 3 years in both groups to a similar degree (p interaction 0.74 for response to acetylcholine and 0.69 for response to sodium nitroprusside). In those with diabetes, use of sulfonylurea was associated with greater decline (p = 0.022 after adjustment for co-prescriptions, change in HbA 1c and weight), whereas improving glycaemic control was associated with less decline of endothelial-dependent microvascular function (p = 0.03). Otherwise, the determinants of microvascular decline were similar in those with and without diabetes. The principal determinant of change in microvascular function in the whole population was weight change over 3 years, such that those that lost ≥5% weight had very little decline in either endothelial-dependent or-independent function compared with those that were weight stable, whereas those who gained weight had a greater decline in function (change in endothelial-dependent function was 1.2 [95% CI −13.2, 15.7] AU × min in those who lost weight; −15.8 [−10.5, −21.0] AU × min in those with stable weight; and −37.8 [−19.4, −56.2] AU × min in those with weight gain; p trend < 0.001). This association of weight change with change in endothelial function was driven by people with diabetes; in people without diabetes, the relationship was nonsignificant. Conclusions/interpretation Over 3 years, physiological change in weight was the greatest predictor of change in microvascular function.
Introduction: Cerebral small vessel disease (SVD) is prevalent in the elderly population and is associated with increased risk of dementia, stroke and disability. Currently there are no clear targets or strategies for the treatment of cerebral SVD. We set out to identify modifiable vascular treatment targets. Patients and Methods: 112 participants with and without a history of CVD underwent macrovascular, microvascular and endothelial function tests and an MRI head scan. Results: Increased carotid intima media thickness and carotid-femoral pulse wave velocity were associated with cerebral WMH (β=1·1 p=0·001 and β=1·66, p<0·0001 respectively). Adjusted cerebral resistance index (p=0·03) and brachial flow mediated dilation time to peak (p=0·001) were associated with the severity of cerebral WMH independent of age and sex. Post occlusive reactive hyperaemia time as a measure of microvascular reactivity was associated with WMH after adjustment for age and sex (p=0·03). Ankle Brachial Pressure Index and urinary albumin excretion rate predicted the severity of cerebral WMH (p=0·02 and 0·01 respectively). Age and hypertension were the most important risk factors for WMH severity (p< 0·0001). Discussion: In addition to hypertension, microalbuminuria, arterial stiffness, vascular reactivity and cerebrovascular resistance could be potential treatment targets to halt the development or progression of cerebral SVD.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers