The gut microbiota is critical for host function. Among mammals, host phylogenetic relatedness and diet are strong drivers of gut microbiota structure, but one factor may be more influential than the other. Here, we used 16S rRNA gene sequencing to determine the relative contributions of host phylogeny and host diet in structuring the gut microbiotas of 11 herbivore species from 5 families living sympatrically in southwest Kenya. Herbivore species were classified as grazers, browsers, or mixed-feeders and dietary data (% C4 grasses in diet) were compiled from previously published sources. We found that herbivore gut microbiotas were highly species-specific, and that host taxonomy accounted for more variation in the gut microbiota (30%) than did host dietary guild (10%) or sample month (8%). Overall, similarity in the gut microbiota increased with host phylogenetic relatedness (r = 0.74) across the 11 species of herbivores, but among 7 closely related Bovid species, dietary %C4 grass values more strongly predicted gut microbiota structure (r = 0.64). Additionally, within bovids, host dietary guild explained more of the variation in the gut microbiota (17%) than did host species (12%). Lastly, while we found that the gut microbiotas of herbivores residing in southwest Kenya converge with those of distinct populations of conspecifics from central Kenya, fine-scale differences in the abundances of bacterial amplicon sequence variants (ASVs) between individuals from the two regions were also observed. Overall, our findings suggest that host phylogeny and taxonomy strongly structure the gut microbiota across broad host taxonomic scales, but these gut microbiotas can be further modified by host ecology (i.e., diet, geography), especially among closely related host species.
Here, we present a taxonomically defined fecal microbiome dataset for healthy domestic cats (Felis catus) fed a range of commercial diets. We used this healthy reference dataset to explore how age, diet, and living environment correlate with fecal microbiome composition. Thirty core bacterial genera were identified. Prevotella, Bacteroides, Collinsella, Blautia, and Megasphaera were the most abundant, and Bacteroides, Blautia, Lachnoclostridium, Sutterella, and Ruminococcus gnavus were the most prevalent. While community composition remained relatively stable across different age classes, the number of core taxa present decreased significantly with age. Fecal microbiome composition varied with host diet type. Cats fed kibble had a slightly, but significantly greater number of core taxa compared to cats not fed any kibble. The core microbiomes of cats fed some raw food contained taxa not as highly prevalent or abundant as cats fed diets that included kibble. Living environment also had a large effect on fecal microbiome composition. Cats living in homes differed significantly from those in shelters and had a greater portion of their microbiomes represented by core taxa. Collectively our work reinforces the findings that age, diet, and living environment are important factors to consider when defining a core microbiome in a population.
Host-associated microbial communities, henceforth ‘microbiota’, can affect the physiology and behavior of their hosts. In mammals, host ecological, social and environmental variables are associated with variation in microbial communities. Within individuals in a given mammalian species, the microbiota also partitions by body site. Here, we build on this work and sequence the bacterial 16S rRNA gene to profile the microbiota at six distinct body sites (ear, nasal and oral cavities, prepuce, rectum and anal scent gland) in a population of wild spotted hyenas (Crocuta crocuta), which are highly social, large African carnivores. We inquired whether microbiota at these body sites vary with host sex or social rank among juvenile hyenas, and whether they differ between juvenile females and adult females. We found that the scent gland microbiota differed between juvenile males and juvenile females, whereas the prepuce and rectal microbiota differed between adult females and juvenile females. Social rank, however, was not a significant predictor of microbiota profiles. Additionally, the microbiota varied considerably among the six sampled body sites and exhibited strong specificity among individual hyenas. Thus, our findings suggest that site-specific niche selection is a primary driver of microbiota structure in mammals, but endogenous host factors may also be influential.
The extent to which nutrients structure microbial communities in permanently stratified lakes is not well understood. This study characterized microbial communities from the anoxic layers of the meromictic and sulfidic Fayetteville Green Lake (FGL), NY, and investigated the roles of organic electron donors and terminal electron acceptors in shaping microbial community structure and interactions. Bacterial communities from the permanently stratified layer below the chemocline (monimolimnion) and from enrichment cultures inoculated by lake sediments were analyzed using 16S rRNA gene sequencing. Results showed that anoxygenic phototrophs dominated microbial communities in the upper monimolimnion (21 m), which harbored little diversity, whereas the most diverse communities resided at the bottom of the lake (~52 m). Organic electron donors explained 54% of the variation in the microbial community structure in aphotic cultures enriched on an array of organic electron donors and different inorganic electron acceptors. Electron acceptors only explained 10% of the variation, but were stronger drivers of community assembly in enrichment cultures supplemented with acetate or butyrate compared to the cultures amended by chitin, lignin or cellulose. We identified a range of habitat generalists and habitat specialists in both the water column and enrichment samples using Levins index. Network analyses of interactions among microbial groups revealed Chlorobi and sulfate reducers as central to microbial interactions in the upper monimolimnion, while Syntrophaceae and other fermenting organisms were more important in the lower monimolimnion. The presence of photosynthetic microbes and communities that degrade chitin and cellulose much below the chemocline supported the downward transport of microbes, organic matter and oxidants from the surface and the chemocline. Collectively, our data suggest niche partitioning of bacterial communities by interactions that depend on the availability of different organic electron donors and terminal electron acceptors. Thus, light, as well as the diversity and availability of chemical resources drive community structure and function in FGL, and likely in other stratified, meromictic lakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.