Background Atherosclerotic intracranial arterial stenosis is an important cause of stroke that is increasingly being treated with percutaneous transluminal angioplasty and stenting (PTAS) to prevent recurrent stroke. However, PTAS has not been compared with medical management in a randomized trial. Methods We randomly assigned patients who had a recent transient ischemic attack or stroke attributed to stenosis of 70 to 99% of the diameter of a major intracranial artery to aggressive medical management alone or aggressive medical management plus PTAS with the use of the Wingspan stent system. The primary end point was stroke or death within 30 days after enrollment or after a revascularization procedure for the qualifying lesion during the follow-up period or stroke in the territory of the qualifying artery beyond 30 days. Results Enrollment was stopped after 451 patients underwent randomization, because the 30-day rate of stroke or death was 14.7% in the PTAS group (nonfatal stroke, 12.5%; fatal stroke, 2.2%) and 5.8% in the medical-management group (nonfatal stroke, 5.3%; non–stroke-related death, 0.4%) (P = 0.002). Beyond 30 days, stroke in the same territory occurred in 13 patients in each group. Currently, the mean duration of follow-up, which is ongoing, is 11.9 months. The probability of the occurrence of a primary end-point event over time differed significantly between the two treatment groups (P = 0.009), with 1-year rates of the primary end point of 20.0% in the PTAS group and 12.2% in the medical-management group. Conclusions In patients with intracranial arterial stenosis, aggressive medical management was superior to PTAS with the use of the Wingspan stent system, both because the risk of early stroke after PTAS was high and because the risk of stroke with aggressive medical therapy alone was lower than expected. (Funded by the National Institute of Neurological Disorders and Stroke and others; SAMMPRIS ClinicalTrials.gov number, NCT00576693.)
Purpose— The aim of this guideline is to present current and comprehensive recommendations for the diagnosis and treatment of aneurysmal subarachnoid hemorrhage (aSAH). Methods— A formal literature search of MEDLINE (November 1, 2006, through May 1, 2010) was performed. Data were synthesized with the use of evidence tables. Writing group members met by teleconference to discuss data-derived recommendations. The American Heart Association Stroke Council's Levels of Evidence grading algorithm was used to grade each recommendation. The guideline draft was reviewed by 7 expert peer reviewers and by the members of the Stroke Council Leadership and Manuscript Oversight Committees. It is intended that this guideline be fully updated every 3 years. Results— Evidence-based guidelines are presented for the care of patients presenting with aSAH. The focus of the guideline was subdivided into incidence, risk factors, prevention, natural history and outcome, diagnosis, prevention of rebleeding, surgical and endovascular repair of ruptured aneurysms, systems of care, anesthetic management during repair, management of vasospasm and delayed cerebral ischemia, management of hydrocephalus, management of seizures, and management of medical complications. Conclusions— aSAH is a serious medical condition in which outcome can be dramatically impacted by early, aggressive, expert care. The guidelines offer a framework for goal-directed treatment of the patient with aSAH.
3020Purpose-The aim of this guideline is to provide a focused update of the current recommendations for the endovascular treatment of acute ischemic stroke. When there is overlap, the recommendations made here supersede those of previous guidelines. Methods-This focused update analyzes results from 8 randomized, clinical trials of endovascular treatment and other relevant data published since 2013. It is not intended to be a complete literature review from the date of the previous guideline publication but rather to include pivotal new evidence that justifies changes in current recommendations. Members of the writing committee were appointed
Summary Background Early results of the Stenting and Aggressive Medical Management for Preventing Recurrent stroke in Intracranial Stenosis trial showed that, by 30 days, 33 (14·7%) of 224 patients in the stenting group and 13 (5·8%) of 227 patients in the medical group had died or had a stroke (percentages are product limit estimates), but provided insufficient data to establish whether stenting offered any longer-term benefit. Here we report the long-term outcome of patients in this trial. Methods We randomly assigned (1:1, stratified by centre with randomly permuted block sizes) 451 patients with recent transient ischaemic attack or stroke related to 70–99% stenosis of a major intracranial artery to aggressive medical management (antiplatelet therapy, intensive management of vascular risk factors, and a lifestyle-modification programme) or aggressive medical management plus stenting with the Wingspan stent. The primary endpoint was any of the following: stroke or death within 30 days after enrolment, ischaemic stroke in the territory of the qualifying artery beyond 30 days of enrolment, or stroke or death within 30 days after a revascularisation procedure of the qualifying lesion during follow-up. Primary endpoint analysis of between-group differences with log-rank test was by intention to treat. This study is registered with ClinicalTrials.gov, number NCT 00576693. Findings During a median follow-up of 32·4 months, 34 (15%) of 227 patients in the medical group and 52 (23%) of 224 patients in the stenting group had a primary endpoint event. The cumulative probability of the primary endpoints was smaller in the medical group versus the percutaneous transluminal angioplasty and stenting (PTAS) group (p=0·0252). Beyond 30 days, 21 (10%) of 210 patients in the medical group and 19 (10%) of 191 patients in the stenting group had a primary endpoint. The absolute differences in the primary endpoint rates between the two groups were 7·1% at year 1 (95% CI 0·2 to 13·8%; p=0·0428), 6·5% at year 2 (−0·5 to 13·5%; p=0·07) and 9·0% at year 3 (1·5 to 16·5%; p=0·0193). The occurrence of the following adverse events was higher in the PTAS group than in the medical group: any stroke (59 [26%] of 224 patients vs 42 [19%] of 227 patients; p=0·0468) and major haemorrhage (29 [13%] of 224 patients vs 10 [4%] of 227 patients; p=0·0009). Interpretation The early benefit of aggressive medical management over stenting with the Wingspan stent for high-risk patients with intracranial stenosis persists over extended follow-up. Our findings lend support to the use of aggressive medical management rather than PTAS with the Wingspan system in high-risk patients with atherosclerotic intracranial arterial stenosis.
Enlighten-Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label phase 3 trial with blinded endpoint
Context Patients with symptomatic atherosclerotic internal carotid artery occlusion (AICAO) and hemodynamic cerebral ischemia are at high risk for subsequent stroke when treated medically. Objective Test the hypothesis that extracranial-intracranial (EC-IC) bypass surgery, added to best medical therapy, reduces subsequent ipsilateral ischemic stroke in patients with recently symptomatic AICAO and hemodynamic cerebral ischemia. Design Parallel group, randomized, open-label, blinded-adjudication clinical treatment trial conducted from 2002–2010. Setting 49 clinical centers and 18 positron emission tomography (PET) centers in the United States and Canada. The majority were academic medical centers. Participants Arteriographically-confirmed AICAO causing hemispheric symptoms within 120 days and hemodynamic cerebral ischemia identified by ipsilateral increased oxygen extraction fraction measured by PET. 195 were randomized: 97 to surgery and 98 to no surgery. Follow-up for the primary endpoint until occurrence, 2 years, or end of trial was 99% complete. No participant withdrew because of adverse events. Interventions Anastomosis of superficial temporal artery branch to a middle cerebral artery cortical branch for the surgical group. Anti-thrombotic therapy and risk factor intervention were recommended for all. Main Outcome Measure For all participants who were assigned to surgery and received surgery, the combination of (1) all stroke and death from surgery through 30 days post surgery and (2) ipsilateral ischemic stroke within 2 years of randomization. For the nonsurgical group and participants assigned to surgery who did not receive surgery was the combination of (1) all stroke and death from randomization to randomization plus 30 days and (2) ipsilateral ischemic stroke within two years of randomization. Results The trial was terminated early for futility. Two-year rates for the primary endpoint were 21.0% (95% CI, 12.8% to 29.2%; 20 events) for the surgical group and 22.7% (95% CI, 13.9% to 31.6%; 20 events) for the nonsurgical group (p=0.78, z-test); difference = 1.7% (95% CI, −10.4% to 13.8%). Thirty-day rates for ipsilateral ischemic stroke were 14.3% (14/97) in the surgical group and 2.0% (2/98) in the nonsurgical group; difference = (95% CI, 4.9% to 19.9%) Conclusions Among participants with recently symptomatic AICAO and hemodynamic cerebral ischemia, EC-IC bypass surgery plus medical therapy compared to medical therapy alone did not reduce the risk of recurrent ipsilateral ischemic stroke at 2 years.
The presence or degree of haemodynamic impairment due to occlusive cerebrovascular disease is often inferred from measurements of cerebral blood flow (CBF), cerebral blood volume (CBV), oxygen extraction fraction (OEF) and the cerebral rate for oxygen metabolism (CMRO2). However, the relationship of these variables, in particular CBV, to regional cerebral haemodynamics is not clearly established in humans with subacute or chronic disease. In the present study, we investigated the relationship of CBV to OEF, CBF and CMRO2, and to subsequent stroke risk in patients with unilateral carotid artery occlusion, in order to define better the associated haemodynamic and metabolic changes. We reviewed data from 81 patients with symptomatic carotid occlusion enrolled in a prospective study of haemodynamic factors and stroke risk. Measurements of CBV, CBF, OEF and CMRO2 were made on entry using PET. Patients were divided into groups by hemispheric ratios and absolute ipsilateral values of OEF and CBV, based on comparison with normal controls. Haemodynamic and metabolic values, risk factors and stroke risk were compared between groups. Based on hemispheric ratios, 45 patients had increased ipsilateral OEF; CBV was increased in 19 of these 45 patients. No differences in CBF, CMRO2 or clinical risk factors were found between these 19 patients and the remaining 26 patients with increased OEF and normal or reduced CBV. Thirteen ipsilateral strokes occurred during follow-up, and 10 of the 13 occurred in the 19 patients with increased OEF and CBV (log rank P < 0.0001). Thirty-two of the 68 patients with complete quantitative PET data had increased OEF by absolute ipsilateral values. CBV was increased in 20 of the 32 patients. No differences in CBF, CMRO2 or clinical risk factors were found between these 20 patients and the remaining 12 patients with increased OEF and normal CBV. Seven of the nine ipsilateral strokes that occurred in the 68 patients occurred in those 20 patients with increased OEF and increased CBV (log rank P = 0.003). The higher risk of ischaemic stroke in patients with increased OEF and CBV suggests that their degree of haemodynamic compromise is more severe than those with increased OEF and normal CBV. In patients with chronic carotid occlusion and increased OEF, increased CBV may indicate pronounced vasodilation due to exhausted autoregulatory vasodilation. The physiological explanation for the measurement of normal CBV in patients with increased OEF is less certain and may reflect preserved autoregulatory capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.