Transforming Growth Factor-beta (TGF-β) is a pro-sclerotic cytokine widely associated with the development of fibrosis in diabetic nephropathy. Central to the underlying pathology of tubulointerstitial fibrosis is epithelial-to-mesenchymal transition (EMT), or the trans-differentiation of tubular epithelial cells into myofibroblasts. This process is accompanied by a number of key morphological and phenotypic changes culminating in detachment of cells from the tubular basement membrane and migration into the interstitium. Ultimately these cells reside as activated myofibroblasts and further exacerbate the state of fibrosis. A large body of evidence supports a role for TGF-β and downstream Smad signaling in the development and progression of renal fibrosis. Here we discuss a role for TGF-β as the principle effector in the development of renal fibrosis in diabetic nephropathy, focusing on the role of the TGF-β1 isoform and its downstream signaling intermediates, the Smad proteins. Specifically we review evidence for TGF-β1 induced EMT in both the proximal and distal regions of the nephron and describe potential therapeutic strategies that may target TGF-β1 activity.
Background/Aims: Epithelial-to-mesenchymal cell transformation (EMT) is the trans-differentiation of tubular epithelial cells into myofibroblasts, an event underlying progressive chronic kidney disease in diabetes, resulting in fibrosis. Mainly reported in proximal regions of the kidney, EMT is now recognized as a key contributor to the loss of renal function throughout the nephron in diabetic nephropathy (DN). Concomitant upregulation of TGF-β in diabetes makes this pro-fibrotic cytokine an obvious candidate in the development of these fibrotic complications. This article reviews recent findings clarifying our understanding of the role of TGF-β and associated sub-cellular proteins in EMT. Methods: To understand the pathology of EMT and the role of TGF-β, we reviewed the literature using PubMed for English language articles that contained key words related to EMT, TGF-β and DN. Results: EMT and phenotypic plasticity of epithelial cells throughout the nephron involves cytoskeletal reorganization and de novo acquisition of classic mesenchymal markers. Concurrent downregulation of epithelial adhesion molecules results in a loss of function and decreased cell coupling, contributing to a loss of epithelial integrity. TGF-β1 is pivotal in mediating these phenotypic changes. Conclusion: TGF-β-induced EMT is a key contributor to fibrotic scar formation as seen in DN, and novel routes for future therapeutic intervention are discussed.
Aims/hypothesis A key pathology in diabetic nephropathy is tubulointerstitial fibrosis. The condition is characterised by increased deposition of the extracellular matrix, fibrotic scar formation and declining renal function, with the prosclerotic cytokine TGF-β1 mediating many of these catastrophic changes. Here we investigated whether TGF-β1-induced epithelial-to-mesenchymal transition (EMT) plays a role in alterations in cell adhesion, cell coupling and cell communication in the human renal proximal tubule. Methods Whole-cell and cell compartment abundance of E-cadherin, N-cadherin, snail, vimentin, β-catenin and connexin-43 was determined in human kidney cell line (HK)2 and human proximal tubule cells with or without TGF-β1, using western blotting and immunocytochemistry, followed by quantification by densitometry. The contribution of connexin-43 in proximal tubule cell communication was quantified using small interfering RNA knockdown, while dye-transfer was used to assess gap junctional intercellular communication (GJIC). Functional tethering was assessed by single-cell force spectroscopy with or without TGF-β1, or by immunoneutralisation of cadherin ligation. Results High glucose (25 mmol/l) increased the secretion of TGF-β1 from HK2 cells. Analysis confirmed early TGF-β1-induced morphological and phenotypical changes of EMT, with altered levels of adhesion and adherens junction proteins. These changes correlated with impaired cell adhesion and decreased tethering between coupled cells. Impaired E-cadherin-mediated adhesion reduced connexin-43 production and GJIC, these effects being mimicked by neutralisation of Ecadherin ligation. Upregulation of N-cadherin failed to restore adhesion or connexin-43-mediated GJIC. Conclusions/interpretation We provide compelling evidence that TGF-β1-induced EMT instigates a loss of Ecadherin, cell adhesion and ultimately of connexinmediated cell communication in the proximal tubule under diabetic conditions; these changes occur ahead of overt signs of renal damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.