The Pseudomonas syringae complex is composed of numerous genetic lineages of strains from both agricultural and environmental habitats including habitats closely linked to the water cycle. The new insights from the discovery of this bacterial species in habitats outside of agricultural contexts per se have led to the revelation of a wide diversity of strains in this complex beyond what was known from agricultural contexts. Here, through Multi Locus Sequence Typing (MLST) of 216 strains, we identified 23 clades within 13 phylogroups among which the seven previously described P. syringae phylogroups were included. The phylogeny of the core genome of 29 strains representing nine phylogroups was similar to the phylogeny obtained with MLST thereby confirming the robustness of MLST-phylogroups. We show that phenotypic traits rarely provide a satisfactory means for classification of strains even if some combinations are highly probable in some phylogroups. We demonstrate that the citrate synthase (cts) housekeeping gene can accurately predict the phylogenetic affiliation for more than 97% of strains tested. We propose a list of cts sequences to be used as a simple tool for quickly and precisely classifying new strains. Finally, our analysis leads to predictions about the diversity of P. syringae that is yet to be discovered. We present here an expandable framework mainly based on cts genetic analysis into which more diversity can be integrated.
Pseudomonas syringae is a plant pathogen well known for its capacity to grow epiphytically on diverse plants and for its ice-nucleation activity. The ensemble of its known biology and ecology led us to postulate that this bacterium is also present in non-agricultural habitats, particularly those associated with water. Here, we report the abundance of P. syringae in rain, snow, alpine streams and lakes and in wild plants, in addition to the previously reported abundance in epilithic biofilms. Each of these substrates harbored strains that corresponded to P. syringae in terms of biochemical traits, pathogenicity and pathogenicity-related factors and that were ice-nucleation active. Phylogenetic comparisons of sequences of four housekeeping genes of the non-agricultural strains with strains of P. syringae from disease epidemics confirmed their identity as P. syringae. Moreover, strains belonging to the same clonal lineage were isolated from snow, irrigation water and a diseased crop plant. Our data suggest that the different substrates harboring P. syringae modify the structure of the associated populations. Here, we propose a comprehensive life cycle for P. syringae-in agricultural and non-agricultural habitats-driven by the environmental cycle of water. This cycle opens the opportunity to evaluate the importance of non-agricultural habitats in the evolution of a plant pathogen and the emergence of virulence. The ice-nucleation activity of all strains from snow, unlike from other substrates, strongly suggests that P. syringae plays an active role in the water cycle as an ice nucleus in clouds.
Despite the integral role of ice nucleators (IN) in atmospheric processes leading to precipitation, their sources and distributions have not been well established. We examined IN in snowfall from mid- and high-latitude locations and found that the most active were biological in origin. Of the IN larger than 0.2 micrometer that were active at temperatures warmer than -7 degrees C, 69 to 100% were biological, and a substantial fraction were bacteria. Our results indicate that the biosphere is a source of highly active IN and suggest that these biological particles may affect the precipitation cycle and/or their own precipitation during atmospheric transport.
The Numbers Game 15:30-16:30 1h Coffee-break / Posters Session 1) Taxonomic and functional diversity of microbial communities 16:30-18:10
Landscapes influence precipitation via the water vapor and energy fluxes they generate. Biologically active landscapes also generate aerosols containing microorganisms, some being capable of catalyzing ice formation and crystal growth in clouds at temperatures near 0 °C. The resulting precipitation is beneficial for the growth of plants and microorganisms. Mounting evidence from observations and numerical simulations support the plausibility of a bioprecipitation feedback cycle involving vegetated landscapes and the microorganisms they host. Furthermore, the evolutionary history of ice nucleation-active bacteria such as Pseudomonas syringae supports that they have been part of this process on geological time scales since the emergence of land plants. Elucidation of bioprecipitation feedbacks involving landscapes and their microflora could contribute to appraising the impact that modified landscapes have on regional weather and biodiversity, and to avoiding inadvertent, negative consequences of landscape management.
Biological ice nucleators (IN) function as catalysts for freezing at relatively warm temperatures (warmer than ؊10°C).We examined the concentration (per volume of liquid) and nature of IN in precipitation collected from Montana and Louisiana, the Alps and Pyrenees (France), Ross Island (Antarctica), and Yukon (Canada). The temperature of detectable ice-nucleating activity for more than half of the samples was > ؊5°C based on immersion freezing testing. Digestion of the samples with lysozyme (i.e., to hydrolyze bacterial cell walls) led to reductions in the frequency of freezing (0 -100%); heat treatment greatly reduced (95% average) or completely eliminated ice nucleation at the measured conditions in every sample. These behaviors were consistent with the activity being bacterial and/or proteinaceous in origin. atmosphere ͉ climate ͉ microbial dissemination ͉ biological ice nuclei A t subzero temperatures warmer than Ϫ40°C, aerosol particles in clouds initiate freezing through the heterogeneous nucleation of ice directly from water vapor or by freezing droplets via several mechanisms: deposition, condensation, contact, and immersion freezing (1). These processes lead to ice formation in clouds that can trigger precipitation. A diverse range of natural and anthropogenic particles, referred to as ice-forming nuclei or ice nucleators (IN), are capable of initiating the ice phase (2). The maximum temperature at which an IN can initiate freezing is specific to that nucleator, but they function similarly by providing templates for the aggregation of individual water molecules in the configuration of an ice embryo, resulting in a subsequent phase change and the cascade of crystal formation (3). Consequently, knowledge of the nature and sources of IN in the atmosphere is important for understanding the meteorological processes responsible for precipitation. The most active naturally occurring IN are biological in origin and have the capacity to catalyze freezing at temperatures near Ϫ2°C (4). The most widespread and well-studied biological aerosols with icenucleating activity are comprised of certain species of plantassociated bacteria (Pseudomonas syringae, Pseudomonas viridiflava, Pseudomonas fluorescens, Pantoea agglomerans, and Xanthomonas campestris), but also fungi (e.g., Fusarium avenaceum), algae such as Chlorella minutissima, and birch pollen (5). P. syringae (6 -8) and F. avenaceum (7) in particular have been detected in atmospheric aerosols and clouds. Icenucleating strains of P. syringae possess a 120-to 180-kDa ice nucleation active protein in their outer membrane comprised of contiguous repeats of a consensus octapeptide; the protein binds water molecules in an ordered arrangement, providing a nucleating template that enhances ice crystal formation (9).Based on reports of ice-nucleating bacteria at altitudes of several kilometers (6, 10) and the warm temperatures at which they function as ice nuclei (Ϫ2°C to Ϫ7°C; ref. Our previous work on snowfall collected from a variety of midand high-latitude locations...
Abstract. For decades, drop-freezing instruments have contributed to a better understanding of biological ice nucleation and its likely implications for cloud and precipitation development. Yet, current instruments have limitations. Drops analysed on a cold stage are subject to evaporation and potential contamination. The use of closed tubes provides a partial solution to these problems, but freezing events are still difficult to be clearly detected. Here, we present a new apparatus where freezing in closed tubes is detected automatically by a change in light transmission upon ice development, caused by the formation of air bubbles and crystal facets that scatter light. Risks of contamination and introduction of biases linked to detecting the freezing temperature of a sample are then minimized. To illustrate the performance of the new apparatus we show initial results of two assays with snow samples. In one, we repeatedly analysed the sample (208 tubes) over the course of a month with storage at +4 • C, during which evidence for biological ice nucleation activity emerged through an increase in the number of ice nucleators active around −4 • C. In the second assay, we indicate the possibility of increasingly isolating a single ice nucleator from a precipitation sample, potentially determining the nature of a particle responsible for a nucleation activity measured directly in the sample. These two seminal approaches highlight the relevance of this handy apparatus for providing new points of view in biological ice nucleation research.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers